Suppr超能文献

Accommodating negative intracluster correlation with a mixed effects logistic model for bivariate binary data.

作者信息

Ten Have T R, Kunselman A, Zharichenko E

机构信息

Center for Biostatistics and Epidemiology, Hershey Medical Center, Pennsylvania State University, Hershey 17033, USA.

出版信息

J Biopharm Stat. 1998 Mar;8(1):131-49. doi: 10.1080/10543409808835227.

Abstract

We extend the random intercept logistic model to accommodate negative intracluster correlations for bivariate binary response data. This approach assumes a single random effect per cluster, but entails separate affine transformations of this random effect for the two responses of the pair. We show this approach works for two data sets and a simulation, whereas other mixed effects approaches fail. The two data sets are from a crossover trial and a developmental toxicity study of the effects of chemical exposure on malformation risk among rat pups. Comparisons are made with the conditional likelihood approach and with generalized estimating equations estimation of the population-averaged logit model. Simulations show the conditional likelihood approach does not perform well for moderate to strong negative correlations, as a positive intracluster correlation is assumed. The proposed mixed effects approach appears to be slightly more conservative than the population-averaged approach with respect to coverage of confidence intervals. Nonetheless, the statistical literature suggests that mixed effects models provide information in addition to that provided by population-averaged models under scientific contexts such as crossover trials. Extensions to trivariate and higher-dimensional responses also are addressed. However, such extensions require certain constraints on the correlation structure.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验