Bieler G S, Williams R L
Research Triangle Institute, Research Triangle Park, North Carolina 27709-2194, USA.
Biometrics. 1995 Jun;51(2):764-76.
This paper presents a model-free approach for evaluating teratology and developmental toxicity data involving clustered binary responses. In teratology studies, a major statistical problem arises from the effect of intralitter correlation, or the potential for littermates to respond similarly. Some statistical methods impose strict distributional assumptions to account for extra-binomial variation, while others rely on nonparametric resampling and empirical variance estimation techniques. Quasi-likelihood methods and generalized estimating equations (GEE), which model the marginal mean/variance relationship, also avoid strict distributional assumptions. The proposed approach, often used to analyze complex sample survey data, is based on a first-order Taylor series approximation and a between-cluster variance estimation procedure, yielding consistent variance estimates for binomial-based proportions and regression coefficients from dose-response models. The cluster sample technique, presented here in the context of a logistic dose-response model, incorporates many of the advantages of quasi-likelihood methods, are valid for any underlying nested correlation structure, and are adaptable to a variety of analytical settings. The results of a simulation study show the cluster sample technique to be a viable competitor to GEE methods currently receiving attention.
本文提出了一种无模型方法,用于评估涉及聚类二元反应的致畸学和发育毒性数据。在致畸学研究中,一个主要的统计问题源于窝内相关性的影响,即同窝幼仔有相似反应的可能性。一些统计方法施加严格的分布假设来解释超二项变异,而其他方法则依赖非参数重采样和经验方差估计技术。拟似然方法和广义估计方程(GEE)对边际均值/方差关系进行建模,也避免了严格的分布假设。所提出的方法通常用于分析复杂的样本调查数据,它基于一阶泰勒级数近似和聚类间方差估计程序,可为基于二项式的比例和剂量反应模型的回归系数提供一致的方差估计。本文在逻辑剂量反应模型的背景下介绍的聚类抽样技术,融合了拟似然方法的许多优点,对任何潜在的嵌套相关结构都有效,并且适用于各种分析场景。一项模拟研究的结果表明,聚类抽样技术是目前受到关注的GEE方法的一个可行竞争对手。