Fayers P M, Curran D, Machin D
Unit for Epidemiology and Clinical Research, Faculty of Medicine, Norwegian University of Science and Technology, Cambridge, U.K.
Stat Med. 1998;17(5-7):679-96. doi: 10.1002/(sici)1097-0258(19980315/15)17:5/7<679::aid-sim814>3.0.co;2-x.
Missing data has been a problem in many quality of life studies. This paper focuses upon the issues involved in handling forms which contain one or more missing items, and reviews the alternative procedures. One of the most widely practised approaches is imputation using the mean of all observed items in the same subscale. This, together with the related estimation of the subscale score, is based upon traditional psychometric approaches to scale design and analysis. We show that it may be an inappropriate method for many of the items in quality of life questionnaires, and would result in biased or misleading estimates. We provide examples of items and subscales which violate the psychometric foundations that underpin simple mean imputation. A checklist is proposed for examining the adequacy of simple imputation, and some alternative procedures are indicated.
数据缺失一直是许多生活质量研究中的一个问题。本文重点关注处理包含一个或多个缺失项的表格所涉及的问题,并回顾了可供选择的程序。最广泛使用的方法之一是使用同一子量表中所有观察项的均值进行插补。这与子量表得分的相关估计一起,是基于量表设计和分析的传统心理测量方法。我们表明,对于生活质量问卷中的许多项目来说,这可能是一种不合适的方法,并且会导致有偏差或误导性的估计。我们提供了一些违反支持简单均值插补的心理测量基础的项目和子量表的示例。提出了一个检查表,用于检查简单插补的充分性,并指出了一些替代程序。