Suppr超能文献

基于模式识别技术的人癌薄切片傅里叶变换红外光谱显微成像

FT-IR microspectroscopic imaging of human carcinoma thin sections based on pattern recognition techniques.

作者信息

Lasch P, Naumann D

机构信息

Robert Koch-Institut, Berlin, Germany.

出版信息

Cell Mol Biol (Noisy-le-grand). 1998 Feb;44(1):189-202.

PMID:9551650
Abstract

FT-IR microspectroscopic maps of unstained thin sections from human melanoma and colon carcinoma tissues were obtained on a conventional infrared microscope equipped with an automatic x, y stage. Mapped infrared data were analyzed by different image re-assembling techniques, namely functional group mapping ("chemical mapping") and, for the first time by cluster analysis, principal component analysis and artificial neural networks. The output values of the different classifiers were recombined with the original spatial information to construct IR-images whose color or gray tones were based on the spatial distribution of individual spectral patterns. While the functional group mapping technique could not reliably differentiate between the different tissue regions, the approach based on pattern recognition yielded images with a high contrast that confirmed standard histopathological techniques. The new technique turned out to be particularly helpful to improve discrimination between different types of tissue structures in general, and to increase image contrast between normal and cancerous regions of a given tissue sample.

摘要

在配备自动x、y载物台的传统红外显微镜上,获取了来自人类黑色素瘤和结肠癌组织的未染色薄片的傅里叶变换红外(FT-IR)显微光谱图。通过不同的图像重组技术分析映射的红外数据,即官能团映射(“化学映射”),并且首次通过聚类分析、主成分分析和人工神经网络进行分析。将不同分类器的输出值与原始空间信息重新组合,以构建红外图像,其颜色或灰度基于各个光谱模式的空间分布。虽然官能团映射技术无法可靠地区分不同的组织区域,但基于模式识别的方法产生了具有高对比度的图像,证实了标准组织病理学技术。事实证明,这项新技术特别有助于总体上改善不同类型组织结构之间的区分,并增加给定组织样本正常区域和癌性区域之间的图像对比度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验