Lasch Peter, Diem Max, Hänsch Wolfgang, Naumann Dieter
P25 "Biomedical Spectroscopy", 13353 Berlin, Nordufer 20, Germany.
J Chemom. 2007 Mar 28;20(5):209-220. doi: 10.1002/cem.993.
In this report the applicability of an improved method of image segmentation of infrared microspectroscopic data from histological specimens is demonstrated. Fourier transform infrared (FT-IR) microspectroscopy was used to record hyperspectral data sets from human colorectal adenocarcinomas and to build up a database of spatially resolved tissue spectra. This database of colon microspectra comprised 4120 high-quality FT-IR point spectra from 28 patient samples and 12 different histological structures. The spectral information contained in the database was employed to teach and validate multilayer perceptron artificial neural network (MLP-ANN) models. These classification models were then employed for database analysis and utilised to produce false colour images from complete tissue maps of FT-IR microspectra. An important aspect of this study was also to demonstrate how the diagnostic sensitivity and specificity can be specifically optimised. An example is given which shows that changes of the number of teaching patterns per class can be used to modify these two interrelated test parameters. The definition of ANN topology turned out to be crucial to achieve a high degree of correspondence between the gold standard of histopathology and IR spectroscopy. Particularly, a hierarchical scheme of ANN classification proved to be superior for the reliable classification of tissue spectra. It was found that unsupervised methods of clustering, specifically agglomerative hierarchical clustering (AHC), were helpful in the initial phases of model generation. Optimal classification results could be achieved if the class definitions for the ANNs were carried out by considering the classification information provided by cluster analysis.
在本报告中,展示了一种改进的方法对组织学标本红外显微光谱数据进行图像分割的适用性。傅里叶变换红外(FT-IR)显微光谱法用于记录来自人类结肠腺癌的高光谱数据集,并建立一个空间分辨组织光谱数据库。这个结肠显微光谱数据库包含来自28个患者样本和12种不同组织结构的4120个高质量FT-IR点光谱。数据库中包含的光谱信息被用于训练和验证多层感知器人工神经网络(MLP-ANN)模型。然后,这些分类模型被用于数据库分析,并用于从FT-IR显微光谱的完整组织图谱生成假彩色图像。本研究的一个重要方面还在于展示如何能够具体优化诊断敏感性和特异性。给出了一个例子,表明每个类别的训练模式数量的变化可用于修改这两个相互关联的测试参数。事实证明,人工神经网络拓扑结构的定义对于实现组织病理学金标准与红外光谱之间的高度一致性至关重要。特别是,人工神经网络分类的分层方案被证明在组织光谱的可靠分类方面更具优势。研究发现,无监督聚类方法,特别是凝聚层次聚类(AHC),在模型生成的初始阶段很有帮助。如果通过考虑聚类分析提供的分类信息来进行人工神经网络的类别定义,就能获得最佳分类结果。