Suppr超能文献

酵母线粒体伴侣蛋白体内底物的鉴定揭示了对hsp60和hsp10重叠但不完全相同的需求。

Identification of in vivo substrates of the yeast mitochondrial chaperonins reveals overlapping but non-identical requirement for hsp60 and hsp10.

作者信息

Dubaquié Y, Looser R, Fünfschilling U, Jenö P, Rospert S

机构信息

Biozentrum der Universität Basel, CH-4056 Basel, Switzerland.

出版信息

EMBO J. 1998 Oct 15;17(20):5868-76. doi: 10.1093/emboj/17.20.5868.

Abstract

The mechanism of chaperonin-assisted protein folding has been mostly analyzed in vitro using non-homologous substrate proteins. In order to understand the relative importance of hsp60 and hsp10 in the living cell, homologous substrate proteins need to be identified and analyzed. We have devised a novel screen to test the folding of a large variety of homologous substrates in the mitochondrial matrix in the absence or presence of functional hsp60 or hsp10. The identified substrates have an Mr of 15-90 kDa and fall into three groups: (i) proteins that require both hsp60 and hsp10 for correct folding; (ii) proteins that completely fail to fold after inactivation of hsp60 but are unaffected by the inactivation of hsp10; and (iii) newly imported hsp60 itself, which is more severely affected by inactivation of hsp10 than by inactivation of pre-existing hsp60. The majority of the identified substrates are group I proteins. For these, the lack of hsp60 function has a more pronounced effect than inactivation of hsp10. We suggest that homologous substrate proteins have differential chaperonin requirements, indicating that hsp60 and hsp10 do not always act as a single functional unit in vivo.

摘要

伴侣蛋白辅助蛋白质折叠的机制大多是在体外使用非同源底物蛋白进行分析的。为了了解hsp60和hsp10在活细胞中的相对重要性,需要鉴定和分析同源底物蛋白。我们设计了一种新颖的筛选方法,以测试在有无功能性hsp60或hsp10的情况下,多种同源底物在线粒体基质中的折叠情况。鉴定出的底物分子量为15 - 90 kDa,分为三组:(i) 需要hsp60和hsp10两者才能正确折叠的蛋白质;(ii) hsp60失活后完全无法折叠但不受hsp10失活影响的蛋白质;(iii) 新导入的hsp60自身,其受hsp10失活的影响比受已存在的hsp60失活的影响更严重。鉴定出的底物大多数是I组蛋白。对于这些蛋白,hsp60功能的缺失比hsp10失活的影响更明显。我们认为同源底物蛋白对伴侣蛋白有不同的需求,这表明hsp60和hsp10在体内并不总是作为一个单一的功能单元起作用。

相似文献

2
Role of the chaperonin cofactor Hsp10 in protein folding and sorting in yeast mitochondria.
J Cell Biol. 1994 Jul;126(2):305-15. doi: 10.1083/jcb.126.2.305.
3
Significance of chaperonin 10-mediated inhibition of ATP hydrolysis by chaperonin 60.
Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9011-6. doi: 10.1073/pnas.94.17.9011.
4
NO-induced downregulation of HSP10 and HSP60 expression in the postischemic brain.
J Neurosci Res. 2007 May 1;85(6):1252-9. doi: 10.1002/jnr.21236.
5
The mitochondrial chaperonin hsp60 is required for its own assembly.
Nature. 1990 Nov 29;348(6300):455-8. doi: 10.1038/348455a0.
6
Mitochondrial heat shock protein (Hsp) 70 and Hsp10 cooperate in the formation of Hsp60 complexes.
J Biol Chem. 2015 May 1;290(18):11611-22. doi: 10.1074/jbc.M115.642017. Epub 2015 Mar 18.
7
HSP60 possesses a GTPase activity and mediates protein folding with HSP10.
Sci Rep. 2017 Dec 5;7(1):16931. doi: 10.1038/s41598-017-17167-7.
9
Refolding of bovine mitochondrial rhodanese by chaperonins GroEL and GroES.
Methods Mol Biol. 2000;140:117-26. doi: 10.1385/1-59259-061-6:117.
10
An inventory of interactors of the human HSP60/HSP10 chaperonin in the mitochondrial matrix space.
Cell Stress Chaperones. 2020 May;25(3):407-416. doi: 10.1007/s12192-020-01080-6. Epub 2020 Feb 14.

引用本文的文献

1
Hijacking Cellular Stress Responses to Promote Lifespan.
Front Aging. 2022 Mar 24;3:860404. doi: 10.3389/fragi.2022.860404. eCollection 2022.
2
Mitochondrial chaperones in human health and disease.
Free Radic Biol Med. 2022 Feb 1;179:363-374. doi: 10.1016/j.freeradbiomed.2021.11.015. Epub 2021 Nov 12.
4
Systemic effects of mitochondrial stress.
EMBO Rep. 2020 Jun 4;21(6):e50094. doi: 10.15252/embr.202050094. Epub 2020 May 24.
6
An inventory of interactors of the human HSP60/HSP10 chaperonin in the mitochondrial matrix space.
Cell Stress Chaperones. 2020 May;25(3):407-416. doi: 10.1007/s12192-020-01080-6. Epub 2020 Feb 14.
7
Folding and assembly defects of pyruvate dehydrogenase deficiency-related variants in the E1α subunit of the pyruvate dehydrogenase complex.
Cell Mol Life Sci. 2018 Aug;75(16):3009-3026. doi: 10.1007/s00018-018-2775-2. Epub 2018 Feb 14.
8
Mitochondrial heat shock protein (Hsp) 70 and Hsp10 cooperate in the formation of Hsp60 complexes.
J Biol Chem. 2015 May 1;290(18):11611-22. doi: 10.1074/jbc.M115.642017. Epub 2015 Mar 18.
9
The role of heat shock proteins in atherosclerosis.
Nat Rev Cardiol. 2014 Sep;11(9):516-29. doi: 10.1038/nrcardio.2014.91. Epub 2014 Jul 15.
10
Transient conformational remodeling of folding proteins by GroES-individually and in concert with GroEL.
J Chem Biol. 2013 Oct 5;7(1):1-15. doi: 10.1007/s12154-013-0106-5. eCollection 2013.

本文引用的文献

4
Structural aspects of GroEL function.
Curr Opin Struct Biol. 1998 Feb;8(1):93-100. doi: 10.1016/s0959-440x(98)80015-8.
5
GroE is vital for cell-wall synthesis.
Nature. 1998 Mar 12;392(6672):139. doi: 10.1038/32317.
6
The Hsp70 and Hsp60 chaperone machines.
Cell. 1998 Feb 6;92(3):351-66. doi: 10.1016/s0092-8674(00)80928-9.
7
The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex.
Nature. 1997 Aug 21;388(6644):741-50. doi: 10.1038/41944.
8
In vivo observation of polypeptide flux through the bacterial chaperonin system.
Cell. 1997 Aug 8;90(3):491-500. doi: 10.1016/s0092-8674(00)80509-7.
9
Significance of chaperonin 10-mediated inhibition of ATP hydrolysis by chaperonin 60.
Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9011-6. doi: 10.1073/pnas.94.17.9011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验