Chen S, Roseman A M, Hunter A S, Wood S P, Burston S G, Ranson N A, Clarke A R, Saibil H R
Department of Crystallography, Birkbeck College London, UK.
Nature. 1994 Sep 15;371(6494):261-4. doi: 10.1038/371261a0.
Protein folding mediated by the molecular chaperone GroEL occurs by its binding to non-native polypeptide substrates and is driven by ATP hydrolysis. Both of these processes are influenced by the reversible association of the co-protein, GroES (refs 2-4). GroEL and other chaperonin 60 molecules are large, cylindrical oligomers consisting of two stacked heptameric rings of subunits; each ring forms a cage-like structure thought to bind polypeptides in a central cavity. Chaperonins play a passive role in folding by binding or sequestering folding proteins to prevent their aggregation, but they may also actively unfold substrate proteins trapped in misfolded forms, enabling them to assume productive folding conformations. Biochemical studies show that GroES improves the efficiency of GroEL function, but the structural basis for this is unknown. Here we report the first direct visualization, by cryo-electron microscopy, of a non-native protein substrate (malate dehydrogenase) bound to the mobile, outer domains at one end of GroEL. Addition of GroES to GroEL in the presence of ATP causes a dramatic hinge opening of about 60 degrees. GroES binds to the equivalent surface of the GroEL outer domains, but on the opposite end of the GroEL oligomer to the protein substrate.
由分子伴侣GroEL介导的蛋白质折叠通过其与非天然多肽底物的结合而发生,并由ATP水解驱动。这两个过程都受到辅助蛋白GroES可逆结合的影响(参考文献2-4)。GroEL和其他伴侣蛋白60分子是大型圆柱形寡聚体,由两个堆叠的七聚体亚基环组成;每个环形成一个笼状结构,被认为可在中央腔中结合多肽。伴侣蛋白通过结合或隔离折叠中的蛋白质以防止其聚集,从而在折叠过程中发挥被动作用,但它们也可能积极展开被困在错误折叠形式中的底物蛋白,使其能够呈现出有效的折叠构象。生化研究表明,GroES提高了GroEL功能的效率,但其结构基础尚不清楚。在这里,我们通过冷冻电子显微镜首次直接观察到一种非天然蛋白质底物(苹果酸脱氢酶)与GroEL一端的可移动外部结构域结合。在ATP存在的情况下,向GroEL中添加GroES会导致约60度的剧烈铰链打开。GroES与GroEL外部结构域的等效表面结合,但位于GroEL寡聚体与蛋白质底物相对的另一端。