Murray R W, Schaadt R D, Zurenko G E, Marotti K R
Genomics Research, Pharmacia & Upjohn, Inc., Kalamazoo, Michigan 49007, USA.
Antimicrob Agents Chemother. 1998 Apr;42(4):947-50. doi: 10.1128/AAC.42.4.947.
Oxazolidinone-resistant mutants of Staphylococcus aureus, isolated with a spiral plating technique, had a 16-fold higher MIC (2 versus 32 microg/ml) of eperezolid when compared to the parental sensitive strain. Eperezolid inhibited in vitro protein translation with 50% inhibitory concentrations of 30 microM for the oxazolidinone-sensitive S30 extract and 75 microM for the resistant extract. Experiments mixing various combinations of S100 and crude ribosome preparations from oxazolidinone-sensitive and -resistant S. aureus strains in a transcription-translation assay demonstrated that the resistant determinant resided within the ribosomal fraction. Ribosomes from the oxazolidinone-resistant strain bound less drug than ribosomes from the sensitive strain, indicating that the ribosome is the site of action for the oxazolidinones. These experiments demonstrate that an alteration of the ribosome is responsible for some or all of the oxazolidinone resistance observed in the S. aureus mutant.
用螺旋平板接种技术分离得到的耐恶唑烷酮金黄色葡萄球菌突变体,与亲本敏感菌株相比,对依哌唑胺的最低抑菌浓度(MIC)高16倍(2微克/毫升对32微克/毫升)。依哌唑胺在体外抑制蛋白质翻译,对恶唑烷酮敏感的S30提取物的50%抑制浓度为30微摩尔,对耐药提取物为75微摩尔。在转录-翻译试验中,将来自恶唑烷酮敏感和耐药金黄色葡萄球菌菌株的各种组合的S100和粗核糖体制剂混合进行实验,结果表明耐药决定簇存在于核糖体部分。来自耐恶唑烷酮菌株的核糖体比来自敏感菌株的核糖体结合的药物少,这表明核糖体是恶唑烷酮类药物的作用位点。这些实验表明,核糖体的改变是导致金黄色葡萄球菌突变体中观察到的部分或全部恶唑烷酮耐药性的原因。