Swaney S M, Aoki H, Ganoza M C, Shinabarger D L
Infectious Diseases Research, Pharmacia & Upjohn, Inc., Kalamazoo, Michigan 49001, USA.
Antimicrob Agents Chemother. 1998 Dec;42(12):3251-5. doi: 10.1128/AAC.42.12.3251.
The oxazolidinones represent a new class of antimicrobial agents which are active against multidrug-resistant staphylococci, streptococci, and enterococci. Previous studies have demonstrated that oxazolidinones inhibit bacterial translation in vitro at a step preceding elongation but after the charging of N-formylmethionine to the initiator tRNA molecule. The event that occurs between these two steps is termed initiation. Initiation of protein synthesis requires the simultaneous presence of N-formylmethionine-tRNA, the 30S ribosomal subunit, mRNA, GTP, and the initiation factors IF1, IF2, and IF3. An initiation complex assay measuring the binding of [3H]N-formylmethionyl-tRNA to ribosomes in response to mRNA binding was used in order to investigate the mechanism of oxazolidinone action. Linezolid inhibited initiation complex formation with either the 30S or the 70S ribosomal subunits from Escherichia coli. In addition, complex formation with Staphylococcus aureus 70S tight-couple ribosomes was inhibited by linezolid. Linezolid did not inhibit the independent binding of either mRNA or N-formylmethionyl-tRNA to E. coli 30S ribosomal subunits, nor did it prevent the formation of the IF2-N-formylmethionyl-tRNA binary complex. The results demonstrate that oxazolidinones inhibit the formation of the initiation complex in bacterial translation systems by preventing formation of the N-formylmethionyl-tRNA-ribosome-mRNA ternary complex.
恶唑烷酮类代表了一类新型抗菌剂,对多重耐药葡萄球菌、链球菌和肠球菌具有活性。先前的研究表明,恶唑烷酮类在体外抑制细菌翻译,作用于延伸之前但在N-甲酰甲硫氨酸加载到起始tRNA分子之后的步骤。这两个步骤之间发生的事件称为起始。蛋白质合成的起始需要N-甲酰甲硫氨酸-tRNA、30S核糖体亚基、mRNA、GTP以及起始因子IF1、IF2和IF3同时存在。为了研究恶唑烷酮的作用机制,使用了一种起始复合物测定法,该方法测量[3H]N-甲酰甲硫氨酰-tRNA响应mRNA结合与核糖体的结合。利奈唑胺抑制了来自大肠杆菌的30S或70S核糖体亚基的起始复合物形成。此外,利奈唑胺抑制了与金黄色葡萄球菌70S紧密偶联核糖体的复合物形成。利奈唑胺既不抑制mRNA或N-甲酰甲硫氨酰-tRNA与大肠杆菌30S核糖体亚基的独立结合,也不阻止IF2-N-甲酰甲硫氨酰-tRNA二元复合物的形成。结果表明,恶唑烷酮类通过阻止N-甲酰甲硫氨酰-tRNA-核糖体-mRNA三元复合物的形成来抑制细菌翻译系统中起始复合物的形成。