Suppr超能文献

Characterization of ion currents elicited by a stream of fluid during spontaneous and ligand-induced chloride current oscillation in Xenopus laevis oocytes.

作者信息

Hülsmann S, Musshoff U, Madeja M, Fischer B, Speckmann E J

机构信息

Institut für Physiologie, Universität Münster, Robert-Koch-Str. 27a, D-48149 Münster, Germany.

出版信息

Pflugers Arch. 1998 Jun;436(1):49-55. doi: 10.1007/s004240050603.

Abstract

During Ca2+-activated C- current oscillations a mechanical deformation of the Xenopus laevis oocyte by a fluid stream evokes transient inward currents of high amplitude (stream evoked inward current, Ii,st). This current can be observed either in native or RNA-injected oocytes expressing ligand-controlled ion channels from rat brain. Ii,st reversed at the equilibrium potential of chloride and was blocked by 9-anthracene carboxylic acid (2 mM). Power spectral analysis of the oscillations did not reveal a correlation between the features of the oscillations and the amplitude of Ii,st. Antagonists of stretch-activated cation channels [gadolinium (100 microM) and lanthanum (1mM)] did not block Ii,st. Calcium channel blockers [cobalt and manganese (10 mM)] did not inhibited Ii,st and Ii,st could also be elicited in calcium-free medium. Preloading oocytes with pertussis toxin (PTX) for 17 h prevented current oscillations and Ii,st caffeine (10 mM), an antagonist of the liberation of calcium from intracellular stores, inhibited Ii,st. Our results proride evidence for modulation of the mechanosensitivity of chloride currents by activation of intracellular second messenger cascades.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验