Van Der Laan M J
School of Public Health, University of California, Berkeley, USA.
Lifetime Data Anal. 1998;4(1):83-102. doi: 10.1023/a:1009660226816.
We derive an identity for nonparametric maximum likelihood estimators (NPMLE) and regularized MLEs in censored data models which expresses the standardized maximum likelihood estimators in terms of the standardized empirical process. This identity provides an effective starting point in proving both consistency and efficiency of NPMLE and regularized MLE. The identity and corresponding method for proving efficiency is illustrated for the NPMLE in the univariate right-censored data model, the regularized MLE in the current status data model and for an implicit NPMLE based on a mixture of right-censored and current status data. Furthermore, a general algorithm for estimation of the limiting variance of the NPMLE is provided.
我们推导了删失数据模型中非参数极大似然估计(NPMLE)和正则化极大似然估计(MLE)的一个恒等式,该恒等式根据标准化经验过程来表示标准化极大似然估计。这个恒等式为证明NPMLE和正则化MLE的一致性和有效性提供了一个有效的起点。针对单变量右删失数据模型中的NPMLE、当前状态数据模型中的正则化MLE以及基于右删失和当前状态数据混合的隐式NPMLE,阐述了该恒等式及相应的证明有效性的方法。此外,还提供了一种估计NPMLE极限方差的通用算法。