Suppr超能文献

淋病奈瑟菌FA1090的菌落相变与菌毛、菌毛蛋白和S-菌毛蛋白表达之间的比较。

Comparisons between colony phase variation of Neisseria gonorrhoeae FA1090 and pilus, pilin, and S-pilin expression.

作者信息

Long C D, Madraswala R N, Seifert H S

机构信息

Northwestern University Medical School, Chicago, Illinois, USA.

出版信息

Infect Immun. 1998 May;66(5):1918-27. doi: 10.1128/IAI.66.5.1918-1927.1998.

Abstract

The gonococcal pilus is a primary virulence factor, providing the initial attachment of the bacterial cell to human mucosal tissues. Pilin, the major subunit of the pilus, can carry a wide spectrum of primary amino acid sequences which are generated by the action of a complex antigenic variation system. Changes in the pilin amino acid sequence can produce different pilus-dependent colony morphotypes, which have been previously shown to reflect phase variation of pili on the bacterial cell surface. In this study, we further examined the relationships between changes in pilus-dependent colony morphology, pilin sequence, pilus expression, and pilus function in Neisseria gonorrhoeae FA1090. A group of FA1090 colony variants expressed different pilin sequences and demonstrated different levels of pilin, S-pilin, and pilus expression. The analysis of these colony variants shows that they do not represent two distinct phases of pilus expression, but that changes in pilin protein sequence produce a spectrum of S-pilin production, pilus expression, and pilus aggregation levels. These different levels of pilus expression and aggregation influence not only colony morphology but also DNA transformation efficiency and epithelial cell adherence.

摘要

淋菌菌毛是一种主要的毒力因子,使细菌细胞能够最初附着于人类黏膜组织。菌毛蛋白是菌毛的主要亚基,可携带多种由复杂抗原变异系统作用产生的一级氨基酸序列。菌毛蛋白氨基酸序列的变化可产生不同的依赖菌毛的菌落形态型,此前已证明这些形态型反映了细菌细胞表面菌毛的相变。在本研究中,我们进一步研究了淋病奈瑟菌FA1090中依赖菌毛的菌落形态变化、菌毛蛋白序列、菌毛表达和菌毛功能之间的关系。一组FA1090菌落变体表达不同的菌毛蛋白序列,并表现出不同水平的菌毛蛋白、S-菌毛蛋白和菌毛表达。对这些菌落变体的分析表明,它们并不代表菌毛表达的两个不同阶段,而是菌毛蛋白序列的变化产生了一系列S-菌毛蛋白产生、菌毛表达和菌毛聚集水平。这些不同水平的菌毛表达和聚集不仅影响菌落形态,还影响DNA转化效率和上皮细胞黏附。

相似文献

2
Neisseria gonorrhoeae PilC expression provides a selective mechanism for structural diversity of pili.
Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3204-8. doi: 10.1073/pnas.89.8.3204.
3
Modulation of gonococcal piliation by regulatable transcription of pilE.
J Bacteriol. 2001 Mar;183(5):1600-9. doi: 10.1128/JB.183.5.1600-1609.2001.
4
Discovery of a New Neisseria gonorrhoeae Type IV Pilus Assembly Factor, TfpC.
mBio. 2020 Oct 27;11(5):e02528-20. doi: 10.1128/mBio.02528-20.
5
Gene conversion in Neisseria gonorrhoeae: evidence for its role in pilus antigenic variation.
Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5366-70. doi: 10.1073/pnas.89.12.5366.
6
The Pilin N-terminal Domain Maintains Neisseria gonorrhoeae Transformation Competence during Pilus Phase Variation.
PLoS Genet. 2016 May 23;12(5):e1006069. doi: 10.1371/journal.pgen.1006069. eCollection 2016 May.
8
Sequence changes in the pilus subunit lead to tropism variation of Neisseria gonorrhoeae to human tissue.
Mol Microbiol. 1994 Aug;13(3):403-16. doi: 10.1111/j.1365-2958.1994.tb00435.x.
9
Piliation control mechanisms in Neisseria gonorrhoeae.
Proc Natl Acad Sci U S A. 1986 Jun;83(11):3890-4. doi: 10.1073/pnas.83.11.3890.
10
Low-level pilin expression allows for substantial DNA transformation competence in Neisseria gonorrhoeae.
Infect Immun. 2003 Nov;71(11):6279-91. doi: 10.1128/IAI.71.11.6279-6291.2003.

引用本文的文献

1
Multisite transformation in : insights on transformations mechanisms and new genetic modification protocols.
Front Microbiol. 2023 Jun 20;14:1178128. doi: 10.3389/fmicb.2023.1178128. eCollection 2023.
2
Phagocytosis via complement receptor 3 enables microbes to evade killing by neutrophils.
J Leukoc Biol. 2023 Jul 1;114(1):1-20. doi: 10.1093/jleuko/qiad028.
3
Anti-Virulence Therapeutic Approaches for .
Antibiotics (Basel). 2021 Jan 21;10(2):103. doi: 10.3390/antibiotics10020103.
4
Discovery of a New Neisseria gonorrhoeae Type IV Pilus Assembly Factor, TfpC.
mBio. 2020 Oct 27;11(5):e02528-20. doi: 10.1128/mBio.02528-20.
5
If looks could kill: Fungal macroscopic morphology and virulence.
PLoS Pathog. 2020 Jun 18;16(6):e1008612. doi: 10.1371/journal.ppat.1008612. eCollection 2020 Jun.
8
Isolation and characterization of Neisseria musculi sp. nov., from the wild house mouse.
Int J Syst Evol Microbiol. 2016 Sep;66(9):3585-3593. doi: 10.1099/ijsem.0.001237. Epub 2016 Jun 13.
9
The Pilin N-terminal Domain Maintains Neisseria gonorrhoeae Transformation Competence during Pilus Phase Variation.
PLoS Genet. 2016 May 23;12(5):e1006069. doi: 10.1371/journal.pgen.1006069. eCollection 2016 May.
10
Antigenic Variation in Bacterial Pathogens.
Microbiol Spectr. 2016 Feb;4(1). doi: 10.1128/microbiolspec.VMBF-0005-2015.

本文引用的文献

1
NEISSERIA GONORRHOEAE. I. VIRULENCE GENETICALLY LINKED TO CLONAL VARIATION.
J Bacteriol. 1963 Jun;85(6):1274-9. doi: 10.1128/jb.85.6.1274-1279.1963.
2
Frequency of pilin antigenic variation in Neisseria gonorrhoeae.
J Bacteriol. 1998 Apr;180(7):1955-8. doi: 10.1128/JB.180.7.1955-1958.1998.
3
Insertionally inactivated and inducible recA alleles for use in Neisseria.
Gene. 1997 Apr 1;188(2):215-20. doi: 10.1016/s0378-1119(96)00810-4.
4
Random shuttle mutagenesis: gonococcal mutants deficient in pilin antigenic variation.
Mol Microbiol. 1997 Mar;23(6):1121-31. doi: 10.1046/j.1365-2958.1997.2971660.x.
6
The product of the pilQ gene is essential for the biogenesis of type IV pili in Neisseria gonorrhoeae.
Mol Microbiol. 1995 Dec;18(5):975-86. doi: 10.1111/j.1365-2958.1995.18050975.x.
7
Discovery of a novel protein modification: alpha-glycerophosphate is a substituent of meningococcal pilin.
Biochem J. 1996 May 15;316 ( Pt 1)(Pt 1):29-33. doi: 10.1042/bj3160029.
8
Meningococcal pilin: a glycoprotein substituted with digalactosyl 2,4-diacetamido-2,4,6-trideoxyhexose.
Mol Microbiol. 1995 Sep;17(6):1201-14. doi: 10.1111/j.1365-2958.1995.mmi_17061201.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验