Vögler O, Bogatkewitsch G S, Wriske C, Krummenerl P, Jakobs K H, van Koppen C J
Institut für Pharmakologie, Universität Gesamthochschule Essen, D-45122 Essen, Germany.
J Biol Chem. 1998 May 15;273(20):12155-60. doi: 10.1074/jbc.273.20.12155.
Sustained stimulation of muscarinic acetylcholine receptors (mAChRs) and other G protein-coupled receptors usually leads to a loss of receptor binding sites from the plasma membrane, referred to as receptor sequestration. Receptor sequestration can occur via endocytosis of clathrin-coated vesicles that bud from the plasma membrane into the cell but may also be accomplished by other, as yet ill-defined, mechanisms. Previous work has indicated that the monomeric GTPase dynamin controls the endocytosis of plasma membrane receptors via clathrin-coated vesicles. To investigate whether mAChRs sequester in a receptor subtype-specific manner via dynamin-dependent clathrin-coated vesicles, we tested the effect of overexpressing the dominant-negative dynamin mutant K44A on m1, m2, m3, and m4 mAChR sequestration in HEK-293 cells. The m1, m2, m3, and m4 mAChRs sequestered rapidly in HEK-293 cells following agonist exposure but displayed dissimilar sequestration pathways. Overexpression of dynamin K44A mutant fully blocked m1 and m3 mAChR sequestration, whereas m2 mAChR sequestration was not affected. Also, m4 mAChRs, which like m2 mAChRs preferentially couple to pertussis toxin-sensitive G proteins, sequestered in a completely dynamin-dependent manner. Following agonist removal, sequestered m1 mAChRs fully reappeared on the cell surface, whereas sequestered m2 mAChRs did not. The distinct sequestration of m2 mAChRs was also apparent in COS-7 and Chinese hamster ovary cells. We conclude that the m2 mAChR displays unique subtype-specific sequestration that distinguishes this receptor from the m1, m3, and m4 subtypes. These results are the first to demonstrate that receptor sequestration represents a new type of receptor subtype-specific regulation within the family of mAChRs.
毒蕈碱型乙酰胆碱受体(mAChRs)和其他G蛋白偶联受体的持续刺激通常会导致质膜上受体结合位点的丢失,这被称为受体隔离。受体隔离可通过从质膜向细胞内出芽的网格蛋白包被小泡的内吞作用发生,但也可能由其他尚未明确的机制完成。先前的研究表明,单体GTP酶发动蛋白通过网格蛋白包被小泡控制质膜受体的内吞作用。为了研究mAChRs是否通过依赖发动蛋白的网格蛋白包被小泡以受体亚型特异性方式进行隔离,我们测试了在HEK-293细胞中过表达显性负性发动蛋白突变体K44A对m1、m2、m3和m4 mAChR隔离的影响。激动剂暴露后,m1、m2、m3和m4 mAChRs在HEK-293细胞中迅速隔离,但显示出不同的隔离途径。发动蛋白K44A突变体的过表达完全阻断了m1和m3 mAChR的隔离,而m2 mAChR的隔离不受影响。此外,与m2 mAChRs一样优先偶联百日咳毒素敏感G蛋白的m4 mAChRs,以完全依赖发动蛋白的方式进行隔离。激动剂去除后,隔离的m1 mAChRs完全重新出现在细胞表面,而隔离的m2 mAChRs则没有。m2 mAChRs的独特隔离在COS-7细胞和中国仓鼠卵巢细胞中也很明显。我们得出结论,m2 mAChR表现出独特的亚型特异性隔离,使其与m1、m3和m4亚型区分开来。这些结果首次证明受体隔离代表了mAChR家族内一种新型的受体亚型特异性调节。