Suppr超能文献

Simplification of the quasiperiodic route to chaos in agonist-induced vasomotion by iterative circle maps.

作者信息

De Brouwer S, Edwards D H, Griffith T M

机构信息

Department of Diagnostic Radiology, University of Wales College of Medicine, Heath Park, Cardiff, United Kingdom.

出版信息

Am J Physiol. 1998 Apr;274(4):H1315-26. doi: 10.1152/ajpheart.1998.274.4.H1315.

Abstract

We have shown that the patterns of vasomotion induced by histamine in isolated rabbit ear resistance arteries can be described in terms of iterative circle maps that model the dynamics of coupled nonlinear oscillators. Cyclopiazonic acid (CPA), an inhibitor of the sarcoplasmic reticulum Ca(2+)-adenosinetriphosphatase pump, consistently transformed chaotic behavior into characteristic periodic oscillations known as mixed-mode responses, which consist of mixtures of large- and small-amplitude excursions and represent frequency-locked states. Quasiperiodicity, which reflects the interaction of oscillators with incommensurate frequencies, was also observed, although in a smaller number of experiments. The patterns of mixed-mode complexes found at different CPA concentrations allowed the derivation of firing numbers, i.e., number of large oscillations/sum of number of small and large oscillations, and the sequences in which they emerged conformed to Farey arithmetic. Two-dimensional return maps derived by Poincaré section of phase space representations of the dynamics were used to compute the mean number of rotations per iteration on the circle, i.e., the winding number. Plots of winding number against firing number revealed a devil's staircase-type structure. Experiments with verapamil, a voltage-operated L-type Ca(2+)-channel antagonist, confirmed that influx of extracellular Ca2+ was essential to sustain chaos, quasiperiodicity, and mixed-mode responses. Nonlinear coupling between cytosolic and membrane events in rabbit ear arteries thus results in a self-organized dynamics that collapses to that predicted by the theory of simple circle maps.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验