Broomfield S, Chow B L, Xiao W
Department of Microbiology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK Canada S7N 5E5.
Proc Natl Acad Sci U S A. 1998 May 12;95(10):5678-83. doi: 10.1073/pnas.95.10.5678.
Among the three Saccharomyces cerevisiae DNA repair epistasis groups, the RAD6 group is the most complicated and least characterized, primarily because it consists of two separate repair pathways: an error-free postreplication repair pathway, and a mutagenesis pathway. The rad6 and rad18 mutants are defective in both pathways, and the rev3 mutant affects only the mutagenesis pathway, but a yeast gene that is involved only in error-free postreplication repair has not been reported. We cloned the MMS2 gene from a yeast genomic library by functional complementation of the mms2-1 mutant [Prakash, L. & Prakash, S. (1977) Genetics 86, 33-55]. MMS2 encodes a 137-amino acid, 15.2-kDa protein with significant sequence homology to a conserved family of ubiquitin-conjugating (Ubc) proteins. However, Mms2 does not appear to possess Ubc activity. Genetic analyses indicate that the mms2 mutation is hypostatic to rad6 and rad18 but is synergistic with the rev3 mutation, and the mms2 mutant is proficient in UV-induced mutagenesis. These phenotypes are reminiscent of a pol30-46 mutant known to be impaired in postreplication repair. The mms2 mutant also displayed a REV3-dependent mutator phenotype, strongly suggesting that the MMS2 gene functions in the error-free postreplication repair pathway, parallel to the REV3 mutagenesis pathway. Furthermore, with respect to UV sensitivity, mms2 was found to be hypostatic to the rad6Delta1-9 mutation, which results in the absence of the first nine amino acids of Rad6. On the basis of these collective results, we propose that the mms2 null mutation and two other allele-specific mutations, rad6Delta1-9 and pol30-46, define the error-free mode of DNA postreplication repair, and that these mutations may enhance both spontaneous and DNA damage-induced mutagenesis.
在酿酒酵母的三个DNA修复上位性组中,RAD6组最为复杂且了解最少,主要是因为它由两条独立的修复途径组成:一条无差错的复制后修复途径和一条诱变途径。rad6和rad18突变体在两条途径中均有缺陷,而rev3突变体仅影响诱变途径,但尚未报道过仅参与无差错复制后修复的酵母基因。我们通过对mms2-1突变体进行功能互补,从酵母基因组文库中克隆了MMS2基因[普拉卡什,L.和普拉卡什,S.(1977年)《遗传学》86卷,33 - 55页]。MMS2编码一种137个氨基酸、15.2 kDa的蛋白质,与泛素结合(Ubc)蛋白的一个保守家族具有显著的序列同源性。然而,Mms2似乎不具备Ubc活性。遗传分析表明,mms2突变对rad6和rad18是下位性的,但与rev3突变是协同的,并且mms2突变体在紫外线诱导的诱变方面是 proficient 的。这些表型让人联想到已知在复制后修复中受损的pol30 - 46突变体。mms2突变体还表现出一种依赖REV3的诱变剂表型,强烈表明MMS2基因在无差错复制后修复途径中发挥作用,与REV3诱变途径平行。此外,就紫外线敏感性而言,发现mms2对rad6Delta1 - 9突变是下位性的,该突变导致Rad6的前九个氨基酸缺失。基于这些综合结果,我们提出mms2无效突变以及另外两个等位基因特异性突变rad6Delta1 - 9和pol30 - 46定义了DNA复制后修复的无差错模式,并且这些突变可能增强自发的和DNA损伤诱导的诱变作用。