Suppr超能文献

酿酒酵母RAD6复制后修复组在诱变和紫外线敏感性方面的功能剖析。

Dissection of the functions of the Saccharomyces cerevisiae RAD6 postreplicative repair group in mutagenesis and UV sensitivity.

作者信息

Cejka P, Vondrejs V, Storchová Z

机构信息

Department of Genetics and Microbiology, Faculty of Natural Sciences, Charles University, 128 44 Prague, Czech Republic.

出版信息

Genetics. 2001 Nov;159(3):953-63. doi: 10.1093/genetics/159.3.953.

Abstract

The RAD6 postreplicative repair group participates in various processes of DNA metabolism. To elucidate the contribution of RAD6 to starvation-associated mutagenesis, which occurs in nongrowing cells cultivated under selective conditions, we analyzed the phenotype of strains expressing various alleles of the RAD6 gene and single and multiple mutants of the RAD6, RAD5, RAD18, REV3, and MMS2 genes from the RAD6 repair group. Our results show that the RAD6 repair pathway is also active in starving cells and its contribution to starvation-associated mutagenesis is similar to that of spontaneous mutagenesis. Epistatic analysis based on both spontaneous and starvation-associated mutagenesis and UV sensitivity showed that the RAD6 repair group consists of distinct repair pathways of different relative importance requiring, besides the presence of Rad6, also either Rad18 or Rad5 or both. We postulate the existence of four pathways: (1) nonmutagenic Rad5/Rad6/Rad18, (2) mutagenic Rad5/Rad6 /Rev3, (3) mutagenic Rad6/Rad18/Rev3, and (4) Rad6/Rad18/Rad30. Furthermore, we show that the high mutation rate observed in rad6 mutants is caused by a mutator different from Rev3. From our data and data previously published, we suggest a role for Rad6 in DNA repair and mutagenesis and propose a model for the RAD6 postreplicative repair group.

摘要

RAD6复制后修复组参与DNA代谢的各种过程。为了阐明RAD6对饥饿相关诱变的作用,这种诱变发生在选择性条件下培养的非生长细胞中,我们分析了表达RAD6基因各种等位基因以及RAD6修复组中RAD6、RAD5、RAD18、REV3和MMS2基因的单突变体和多突变体菌株的表型。我们的结果表明,RAD6修复途径在饥饿细胞中也有活性,并且其对饥饿相关诱变的作用与自发诱变相似。基于自发诱变和饥饿相关诱变以及紫外线敏感性的上位性分析表明,RAD6修复组由不同相对重要性的不同修复途径组成,除了存在Rad6外,还需要Rad18或Rad5或两者都有。我们假设存在四种途径:(1)非诱变的Rad5/Rad6/Rad18,(2)诱变的Rad5/Rad6/Rev3,(3)诱变的Rad6/Rad18/Rev3,以及(4)Rad6/Rad18/Rad30。此外,我们表明在rad6突变体中观察到的高突变率是由一种不同于Rev3的诱变剂引起的。根据我们的数据和先前发表的数据,我们提出Rad6在DNA修复和诱变中的作用,并提出RAD6复制后修复组的模型。

相似文献

4
Requirement of RAD5 and MMS2 for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae.
Mol Cell Biol. 2002 Apr;22(7):2419-26. doi: 10.1128/MCB.22.7.2419-2426.2002.
9
Saccharomyces cerevisiae RAD5 influences the excision repair of DNA minor groove adducts.
J Biol Chem. 2002 Nov 15;277(46):44576-81. doi: 10.1074/jbc.M208169200. Epub 2002 Sep 10.

引用本文的文献

1
stress-associated mutagenesis and developmental DNA repair.
Microbiol Mol Biol Rev. 2024 Jun 27;88(2):e0015823. doi: 10.1128/mmbr.00158-23. Epub 2024 Mar 29.
3
Eukaryotic DNA polymerase ζ.
DNA Repair (Amst). 2015 May;29:47-55. doi: 10.1016/j.dnarep.2015.02.012. Epub 2015 Feb 19.
4
Error-free DNA damage tolerance and sister chromatid proximity during DNA replication rely on the Polα/Primase/Ctf4 Complex.
Mol Cell. 2015 Mar 5;57(5):812-823. doi: 10.1016/j.molcel.2014.12.038. Epub 2015 Feb 5.
5
Shared genetic pathways contribute to the tolerance of endogenous and low-dose exogenous DNA damage in yeast.
Genetics. 2014 Oct;198(2):519-30. doi: 10.1534/genetics.114.168617. Epub 2014 Jul 24.
6
DNA repair mechanisms and the bypass of DNA damage in Saccharomyces cerevisiae.
Genetics. 2013 Apr;193(4):1025-64. doi: 10.1534/genetics.112.145219.
7
The mechanism of nucleotide excision repair-mediated UV-induced mutagenesis in nonproliferating cells.
Genetics. 2013 Mar;193(3):803-17. doi: 10.1534/genetics.112.147421. Epub 2013 Jan 10.
10
Requirement of Rad5 for DNA polymerase zeta-dependent translesion synthesis in Saccharomyces cerevisiae.
Genetics. 2008 Sep;180(1):73-82. doi: 10.1534/genetics.108.091066. Epub 2008 Aug 30.

本文引用的文献

3
Adaptive mutation: implications for evolution.
Bioessays. 2000 Dec;22(12):1067-74. doi: 10.1002/1521-1878(200012)22:12<1067::AID-BIES4>3.0.CO;2-Q.
5
DNA damage-induced mutation: tolerance via translesion synthesis.
Mutat Res. 2000 Jun 30;451(1-2):169-85. doi: 10.1016/s0027-5107(00)00048-8.
6
Specificity of DNA lesion bypass by the yeast DNA polymerase eta.
J Biol Chem. 2000 Mar 17;275(11):8233-9. doi: 10.1074/jbc.275.11.8233.
7
Rad6-dependent ubiquitination of histone H2B in yeast.
Science. 2000 Jan 21;287(5452):501-4. doi: 10.1126/science.287.5452.501.
8
Distinct roles for Rev1p and Rev7p during translesion synthesis in Saccharomyces cerevisiae.
Mol Microbiol. 1999 Oct;34(1):124-33. doi: 10.1046/j.1365-2958.1999.01583.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验