Suppr超能文献

一个将职业史调查问卷数据与磁场监测数据相连接的系统。

A system linking occupation history questionnaire data and magnetic field monitoring data.

作者信息

Burau K D, Huang B, Whitehead L W, Delclos G M, Downs T D

机构信息

School of Public Health, University of Texas Health Science Center, Houston 77030, USA.

出版信息

J Expo Anal Environ Epidemiol. 1998 Apr-Jun;8(2):231-52.

PMID:9577753
Abstract

A method is presented which links on-site electromagnetic field monitoring data with pre-existing work history data. The linkage is used to estimate cumulative and average annualized magnetic field exposure for a case-control study. On-site electromagnetic field monitoring data for 1,966 volunteer utility employees, at 59 sites in the United States and three other countries, were obtained from a large project (the EMDEX project) designed to collect, analyze, and document 60-Hz electric and magnetic field exposures for a diverse population. These data represent 9 primary work environments, and 16 job classification categories, amounting to 144 unique job categories which were consolidated using the job-exposure matrix presented into 282 three-digit Dictionary of Occupational Title (DOT) codes. The DOT code categories were then linked to lifetime occupational histories from a case-control study of leukemia. The method may be extended to link additional job titles with monitoring information. Job titles linked with electromagnetic field monitoring information provide more specific estimates of exposure intensity than previous ordinal estimates of exposure. Therefore, estimates of cumulative electromagnetic field exposure are achievable, as well as high and low level exposure estimates.

摘要

本文介绍了一种将现场电磁场监测数据与既往工作经历数据相联系的方法。这种联系用于病例对照研究中估算累积和年均磁场暴露量。来自一项大型项目(EMDEX项目)的1966名公用事业志愿者员工在美国59个地点以及其他三个国家的现场电磁场监测数据,该项目旨在收集、分析和记录不同人群的60赫兹电场和磁场暴露情况。这些数据代表9种主要工作环境和16种职业分类类别,共计144种独特的职业类别,通过所呈现的职业暴露矩阵将其合并为282个三位数的《职业名称词典》(DOT)编码。然后,将DOT编码类别与白血病病例对照研究中的终生职业史相联系。该方法可扩展用于将更多职位与监测信息相联系。与电磁场监测信息相联系的职位提供了比先前按顺序估算暴露量更具体的暴露强度估算值。因此,可以实现累积电磁场暴露量的估算,以及高水平和低水平暴露量的估算。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验