McFarland J G
Blood Center of Southeastern Wisconsin, Milwaukee 53201-2178, USA.
Transfus Clin Biol. 1998 Feb;5(1):13-21. doi: 10.1016/s1246-7820(98)80107-9.
Immune responses to platelet and neutrophil alloantigens are involved in the pathogenesis of several clinical syndromes including: neonatal alloimmune thrombocytopenia (NATP), post-transfusion purpura (PTP), refractory responses to platelet transfusion, neonatal alloimmune neutropenia (NAN), transfusion-related acute lung injury (TRALI), and chronic benign autoimmune neutropenia of infancy. Initially, platelet alloantigens were only characterized serologically. Subsequently, they were localized to specific platelet surface glycoprotein structures and ultimately defined to the level of nucleic acid polymorphisms on platelet glycoprotein genes. These advances allowed the tools of molecular biology to be applied to typing for platelet alloantigens. The advantages of such typing methods include: 1) patient platelets are no longer required for the typing assays, and therefore, platelet types can be established on extremely thrombocytopenic samples (by using peripheral blood white blood cells [WBC]); 2) The genotyping methods eliminate the requirement for rare serologic reagents. A number of different genotyping methods have been developed. These include: restriction fragment length polymorphism (RFLP), sequence specific primers (SSP), and Dot-Blot hybridization. Clinical applications of this methodology include: determining the platelet genotype of fetuses at risk for NATP, in the diagnosis of PTP, and identifying causes of refractory responses to platelet transfusions. Analogous to platelet alloantigens, a limited number of neutrophil alloantigens can now be determined by molecular biologic methods. The new methods obviate the need to isolate fresh neutrophils for serologic typing and do not require rare serologic reagents. To date, molecular polymorphisms associated with alloantigens on the neutrophil Fc gamma RIIIb surface glycoprotein have been elucidated. These include the allo-antigens NA1, NA2, and SH.
对血小板和中性粒细胞同种抗原的免疫反应参与了多种临床综合征的发病机制,包括:新生儿同种免疫性血小板减少症(NATP)、输血后紫癜(PTP)、对血小板输血的难治性反应、新生儿同种免疫性中性粒细胞减少症(NAN)、输血相关急性肺损伤(TRALI)以及婴儿慢性良性自身免疫性中性粒细胞减少症。最初,血小板同种抗原仅通过血清学进行鉴定。随后,它们被定位到特定的血小板表面糖蛋白结构,最终确定到血小板糖蛋白基因上的核酸多态性水平。这些进展使得分子生物学工具能够应用于血小板同种抗原的分型。此类分型方法的优点包括:1)分型检测不再需要患者的血小板,因此,可以在极低血小板计数的样本上确定血小板类型(通过使用外周血白细胞[WBC]);2)基因分型方法消除了对稀有血清学试剂的需求。已经开发了许多不同的基因分型方法。这些方法包括:限制性片段长度多态性(RFLP)、序列特异性引物(SSP)和斑点印迹杂交。该方法的临床应用包括:确定有NATP风险的胎儿的血小板基因型、诊断PTP以及确定对血小板输血难治性反应的原因。与血小板同种抗原类似,现在可以通过分子生物学方法确定有限数量的中性粒细胞同种抗原。新方法无需分离新鲜中性粒细胞进行血清学分型,也不需要稀有血清学试剂。迄今为止,已经阐明了与中性粒细胞FcγRIIIb表面糖蛋白上的同种抗原相关的分子多态性。这些同种抗原包括NA1、NA2和SH。