Tucker C L, Hurley J H, Miller T R, Hurley J B
Howard Hughes Medical Institute and Department of Biochemistry, Box 357370, University of Washington, Seattle, WA 98195, USA.
Proc Natl Acad Sci U S A. 1998 May 26;95(11):5993-7. doi: 10.1073/pnas.95.11.5993.
Guanylyl cyclases (GCs) and adenylyl cyclases (ACs) have fundamental roles in a wide range of cellular processes. Whereas GCs use GTP as a substrate to form cGMP, ACs catalyze the analogous conversion of ATP to cAMP. Previously, a model based on the structure of adenylate cyclase was used to predict the structure of the nucleotide-binding pocket of a membrane guanylyl cyclase, RetGC-1. Based on this model, we replaced specific amino acids in the guanine-binding pocket of GC with their counterparts from AC. A change of two amino acids, E925K together with C995D, is sufficient to completely alter the nucleotide specificity from GTP to ATP. These experiments strongly validate the AC-derived RetGC-1 structural model and functionally confirm the role of these residues in nucleotide discrimination.
鸟苷酸环化酶(GCs)和腺苷酸环化酶(ACs)在广泛的细胞过程中发挥着重要作用。GCs利用GTP作为底物形成cGMP,而ACs催化ATP向cAMP的类似转化。此前,基于腺苷酸环化酶的结构建立了一个模型,用于预测膜鸟苷酸环化酶RetGC-1的核苷酸结合口袋的结构。基于该模型,我们将GC的鸟嘌呤结合口袋中的特定氨基酸替换为AC中的对应氨基酸。两个氨基酸的改变,即E925K和C995D一起,足以完全改变核苷酸特异性,从GTP变为ATP。这些实验有力地验证了源自AC的RetGC-1结构模型,并在功能上证实了这些残基在核苷酸识别中的作用。