Suppr超能文献

Evolution and resolution of long-term cardiac memory.

作者信息

Shvilkin A, Danilo P, Wang J, Burkhoff D, Anyukhovsky E P, Sosunov E A, Hara M, Rosen M R

机构信息

Department of Pharmacology, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA.

出版信息

Circulation. 1998 May 12;97(18):1810-7. doi: 10.1161/01.cir.97.18.1810.

Abstract

BACKGROUND

Cardiac memory (CM) refers to T-wave changes induced by ventricular pacing or arrhythmia that accumulate in magnitude and duration with repeated episodes of abnormal activation. We report herein the kinetics of long-term CM and its association with the ventricular action potential.

METHODS AND RESULTS

Dogs were paced from the ventricles at rates of 110 to 120 bpm for approximately 3 weeks. CM characterized by gradual sinus rhythm T vector rotation toward the paced QRS vector evolved in all dogs regardless of pacing site (left ventricular [LV] anterior apex or base, posterior LV, or right ventricular free wall). Cardiac hemodynamics and myocardial flow (microsphere studies) were unaltered by the pacing. Recovery time for the memory T wave to return to control increased with duration of the previous pacing. The protein synthesis inhibitor cycloheximide markedly (P<.05) and reproducibly attenuated evolution of CM. When pacing was performed from the atrium, CM did not occur. Standard microelectrode techniques were used to study action potential from the LV free wall of control and CM dogs. CM was associated with increased action potential duration in epicardial and endocardial but not midmyocardial cells, significantly altering the transmyocardial gradient for repolarization.

CONCLUSIONS

CM is a dynamic process for which the final T vector is predicted by the paced QRS vector and which is associated with significant changes in epicardial and endocardial but not midmyocardial cell action potential duration, such that the transmural gradient of repolarization is altered. It is unaccompanied by evidence of altered hemodynamics or flow, requires a change in pathway of activation, and appears to require new protein synthesis.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验