Panke S, Witholt B, Schmid A, Wubbolts M G
Institute of Biotechnology, Swiss Federal Institute of Technology Zurich, CH-8093 Zurich, Switzerland.
Appl Environ Microbiol. 1998 Jun;64(6):2032-43. doi: 10.1128/AEM.64.6.2032-2043.1998.
In order to design a biocatalyst for the production of optically pure styrene oxide, an important building block in organic synthesis, the metabolic pathway and molecular biology of styrene degradation in Pseudomonas sp. strain VLB120 was investigated. A 5.7-kb XhoI fragment, which contained on the same strand of DNA six genes involved in styrene degradation, was isolated from a gene library of this organism in Escherichia coli by screening for indigo formation. T7 RNA polymerase expression experiments indicated that this fragment coded for at least five complete polypeptides, StyRABCD, corresponding to five of the six genes. The first two genes encoded the potential carboxy-terminal part of a sensor, named StySc, and the complete response regulator StyR. Fusion of the putative styAp promoter to a lacZ reporter indicated that StySc and StyR together regulate expression of the structural genes at the transcriptional level. Expression of styScR also alleviated a block that prevented translation of styA mRNA when a heterologous promoter was used. The structural genes styA and styB produced a styrene monooxygenase that converted styrene to styrene oxide, which was then converted to phenylacetaldehyde by StyC. Sequence homology analysis of StyD indicated a probable function as a phenylacetaldehyde dehydrogenase. To assess the usefulness of the enzymes for the production of enantiomerically pure styrene oxide, we investigated the enantiospecificities of the reactions involved. Kinetic resolution of racemic styrene oxide by styrene oxide isomerase was studied with E. coli recombinants carrying styC, which converted styrene oxide at a very high rate but with only a slight preference for the S enantiomer. However, recombinants producing styrene monooxygenase catalyzed the formation of (S)-styrene oxide from inexpensive styrene with an excellent enantiomeric excess of more than 99% at rates up to 180 U g (dry weight) of cells-1.
为了设计一种用于生产光学纯环氧苯乙烷(有机合成中的一种重要结构单元)的生物催化剂,对假单胞菌属菌株VLB120中苯乙烯降解的代谢途径和分子生物学进行了研究。通过筛选靛蓝形成,从该生物体在大肠杆菌中的基因文库中分离出一个5.7 kb的XhoI片段,该片段在DNA的同一条链上包含六个参与苯乙烯降解的基因。T7 RNA聚合酶表达实验表明,该片段编码至少五个完整的多肽,即StyRABCD,对应于六个基因中的五个。前两个基因编码一种名为StySc的传感器潜在的羧基末端部分以及完整的应答调节因子StyR。推测的styAp启动子与lacZ报告基因的融合表明,StySc和StyR共同在转录水平上调节结构基因的表达。当使用异源启动子时,styScR的表达也缓解了阻止styA mRNA翻译的障碍。结构基因styA和styB产生一种苯乙烯单加氧酶,该酶将苯乙烯转化为环氧苯乙烷,然后由StyC将其转化为苯乙醛。StyD的序列同源性分析表明其可能具有苯乙醛脱氢酶的功能。为了评估这些酶用于生产对映体纯环氧苯乙烷的实用性,我们研究了相关反应的对映体特异性。用携带styC的大肠杆菌重组体研究了环氧苯乙烷异构酶对外消旋环氧苯乙烷的动力学拆分,styC能以非常高的速率转化环氧苯乙烷,但对S对映体只有轻微偏好。然而,产生苯乙烯单加氧酶的重组体以高达180 U g(干重)细胞-1的速率催化由廉价苯乙烯形成(S)-环氧苯乙烷,对映体过量率高达99%以上。