Ohyama C, Smith P L, Angata K, Fukuda M N, Lowe J B, Fukuda M
Glycobiology Program, La Jolla Cancer Research Center, The Burnham Institute, La Jolla, California 92037, USA.
J Biol Chem. 1998 Jun 5;273(23):14582-7. doi: 10.1074/jbc.273.23.14582.
Subsets of mammalian cell surface oligosaccharides contain specific fucosylated moieties expressed in lineage- and/or temporal-specific patterns. The functional significance of these fucosylated structures is incompletely defined, although there is evidence that subsets of them, represented by the sialyl Lex determinant, are important participants in leukocyte adhesion and trafficking processes. Genetic deletion of these fucosylated structures in the mouse has been a powerful tool to address functional questions about fucosylated glycans. However, successful use of such approaches can be problematic, given the substantial redundancy in the mammalian alpha-1,3-fucosyltransferase and alpha-1,2-fucosyltransferase gene families. To circumvent this problem, we have chosen to clone the genetic locus encoding a mammalian GDP-D-mannose-4,6-dehydratase (GMD). This enzyme generates GDP-mannose-4-keto-6-D-deoxymannose from GDP-mannose, which is then converted by the FX protein (GDP-4-keto-6-D-deoxymannose epimerase/GDP-4-keto-6-L-galactose reductase) to GDP-L-fucose. GMD is thus imperative for the synthesis of all fucosylated oligosaccharides. An expression cloning approach and the GMD-deficient CHO host cell line Lec13 were used to generate a population of cDNA molecules enriched in GMD cDNAs. This enriched plasmid population was then screened using a human expressed sequence tag (EST AA065072) with sequence similarity to an Arabidopsis thaliana GMD cDNA. This approach, together with 5'-rapid amplification of cDNA ends, yielded a human cDNA that complements the fucosylation defect in the Lec13 cell line. Northern blot analyses indicate that the GMD transcript is absent in Lec13 cells, confirming the genetic deficiency of this locus in these cells. By contrast, the transcript encoding the FX protein, which forms GDP-L-fucose from the ketosugar intermediate produced by GMD, is present in increased amounts in the Lec13 cells. These results suggest that metabolites generated in this pathway may participate in the transcriptional regulation of the FX protein and possibly the GMD protein. The results also suggest that the genomic structure encoding GMD in Lec13 cells likely has a defect different from a point mutation in the coding region.
哺乳动物细胞表面寡糖的亚群包含以谱系特异性和/或时间特异性模式表达的特定岩藻糖基化部分。尽管有证据表明,以唾液酸化路易斯决定簇为代表的这些岩藻糖基化结构亚群是白细胞黏附和运输过程的重要参与者,但其功能意义尚未完全明确。在小鼠中对这些岩藻糖基化结构进行基因敲除,已成为解决有关岩藻糖基化聚糖功能问题的有力工具。然而,鉴于哺乳动物α-1,3-岩藻糖基转移酶和α-1,2-岩藻糖基转移酶基因家族存在大量冗余,成功使用此类方法可能会出现问题。为规避这一问题,我们选择克隆编码哺乳动物GDP-D-甘露糖-4,6-脱水酶(GMD)的基因位点。该酶从GDP-甘露糖生成GDP-甘露糖-4-酮-6-D-脱氧甘露糖,然后由FX蛋白(GDP-4-酮-6-D-脱氧甘露糖表异构酶/GDP-4-酮-6-L-半乳糖还原酶)将其转化为GDP-L-岩藻糖。因此,GMD对于所有岩藻糖基化寡糖的合成至关重要。采用表达克隆方法和GMD缺陷型CHO宿主细胞系Lec13来生成富含GMD cDNA的cDNA分子群体。然后使用与拟南芥GMD cDNA具有序列相似性的人类表达序列标签(EST AA065072)对该富集的质粒群体进行筛选。此方法与5'-cDNA末端快速扩增相结合,得到了一个能弥补Lec13细胞系岩藻糖基化缺陷的人类cDNA。Northern印迹分析表明,Lec13细胞中不存在GMD转录本,证实了该基因位点在这些细胞中的遗传缺陷。相比之下,编码FX蛋白的转录本在Lec13细胞中的含量增加,该蛋白可从GMD产生的酮糖中间体形成GDP-L-岩藻糖。这些结果表明,该途径中产生的代谢产物可能参与了FX蛋白以及可能还有GMD蛋白的转录调控。结果还表明,Lec13细胞中编码GMD的基因组结构可能存在与编码区点突变不同的缺陷。