Rizzi M, Tonetti M, Vigevani P, Sturla L, Bisso A, Flora A D, Bordo D, Bolognesi M
Dipartimento di Scienza e Tecnologia del Farmaco Universitá del Piemonte Orientale "A.Avogadro" Viale Ferrucci 33-28100 Novara, Italy.
Structure. 1998 Nov 15;6(11):1453-65. doi: 10.1016/s0969-2126(98)00144-0.
The process of guanosine 5'-diphosphate L-fucose (GDP-L-fucose) biosynthesis is conserved throughout evolution from prokaryotes to man. In animals, GDP-L-fucose is the substrate of fucosyltransferases that participate in the biosynthesis and remodeling of glycoconjugates, including ABH blood group and Lewis-system antigens. The 'de novo' pathway of GDP-L-fucose biosynthesis from GDP-D-mannose involves a GDP-D-mannose 4,6 dehydratase (GMD) and a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (GMER). Neither of the catalytic mechanisms nor the three-dimensional structures of the two enzymes has been elucidated yet. The severe leukocyte adhesion deficiency (LAD) type II genetic syndrome is known to result from deficiencies in this de novo pathway.
The crystal structures of apo- and holo-GMER have been determined at 2.1 A and 2.2 A resolution, respectively. Each subunit of the homodimeric (2 x 34 kDa) enzyme is composed of two domains. The N-terminal domain, a six-stranded Rossmann fold, binds NADP+; the C-terminal domain (about 100 residues) displays an alpha/beta topology. NADP+ interacts with residues Arg12 and Arg36 at the adenylic ribose phosphate; moreover, a protein loop based on the Gly-X-X-Gly-X-X-Gly motif (where X is any amino acid) stabilizes binding of the coenzyme diphosphate bridge. The nicotinamide and the connected ribose ring are located close to residues Ser107, Tyr136 and Lys140, the putative GMER active-site center.
The GMER fold is reminiscent of that observed for UDP-galactose epimerase (UGE) from Escherichia coli. Consideration of the enzyme fold and of its main structural features allows assignment of GMER to the reductase-epimerase-dehydrogenase (RED) enzyme homology superfamily, to which short-chain dehydrogenase/reductases (SDRs) also belong. The location of the NADP+ nicotinamide ring at an interdomain cleft is compatible with substrate binding in the C-terminal domain.
从原核生物到人类,鸟苷5'-二磷酸L-岩藻糖(GDP-L-岩藻糖)的生物合成过程在进化过程中是保守的。在动物中,GDP-L-岩藻糖是岩藻糖基转移酶的底物,这些酶参与糖缀合物的生物合成和重塑,包括ABH血型和Lewis系统抗原。从GDP-D-甘露糖开始的GDP-L-岩藻糖生物合成的“从头”途径涉及GDP-D-甘露糖4,6脱水酶(GMD)和GDP-4-酮-6-脱氧-D-甘露糖差向异构酶/还原酶(GMER)。这两种酶的催化机制和三维结构都尚未阐明。已知严重白细胞黏附缺陷(LAD)II型遗传综合征是由这种从头途径的缺陷引起的。
分别以2.1 Å和2.2 Å的分辨率测定了脱辅基GMER和全酶GMER的晶体结构。同二聚聚聚体(2×34 kDa)酶的每个亚基由两个结构域组成。N端结构域是一个六链Rossmann折叠,结合NADP⁺;C端结构域(约100个残基)呈现α/β拓扑结构。NADP⁺与腺苷核糖磷酸上的精氨酸12和精氨酸36相互作用;此外,基于Gly-X-X-Gly-X-X-Gly基序(其中X是任何氨基酸)的蛋白质环稳定了辅酶二磷酸桥的结合。烟酰胺和相连的核糖环靠近推测的GMER活性位点中心的丝氨酸107、酪氨酸136和赖氨酸140残基。
GMER的折叠让人联想到大肠杆菌UDP-半乳糖差向异构酶(UGE)的折叠。考虑到酶的折叠及其主要结构特征,可将GMER归为还原酶-差向异构酶-脱氢酶(RED)酶同源超家族,短链脱氢酶/还原酶(SDR)也属于该超家族。NADP⁺烟酰胺环位于结构域间裂隙处,这与底物在C端结构域中的结合是相符的。