Suppr超能文献

Current concepts of ventricular defibrillation.

作者信息

Chen P S, Swerdlow C D, Hwang C, Karagueuzian H S

机构信息

Department of Medicine, Cedars-Sinai Medical Center and UCLA School of Medicine, Los Angeles, California 90048, USA.

出版信息

J Cardiovasc Electrophysiol. 1998 May;9(5):553-62. doi: 10.1111/j.1540-8167.1998.tb01848.x.

Abstract

The aim of this article is to review the current concepts of ventricular defibrillation. We studied the interaction between strong electrical stimulus and cardiac responses in both animal models and in humans. We found that a premature stimulus (S2) of appropriate strength results in figure-eight reentry in vitro by inducing propagated graded responses. The same stimulation protocol induces figure-eight reentry and ventricular fibrillation (VF) in vivo. When the S2 strength and the magnitude of graded responses increase beyond a critical level, the increase in refractoriness at the site of the stimulus becomes so long that the unidirectional block becomes bidirectional block, preventing the formation of reentry (upper limit of vulnerability [ULV]). In other studies, we found that the effects of an electrical stimulation on reentry is in part determined by the timing of the stimulus. A protective zone is present after the induction of VF and after an unsuccessful defibrillation shock during which an electrical stimulus can terminate reentry and protect the heart from VF. These results indicate that the effects of a defibrillation shock is dependent on both the strength and the timing of the shock. Timing is not important in areas where the shock field strength is > or = ULV because the shock terminates all reentry but cannot reinitiate new ones. However, in areas where shock field strength is < ULV, the effects of the shock are determined by the timing of the shock relative to local VF activations. This ULV hypothesis of defibrillation explains the probabilistic nature of ventricular defibrillation. It also indicates that, to achieve a high probability of successful defibrillation, a shock must result in a shock field strength of > or = ULV throughout the ventricles.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验