Suppr超能文献

Protection against kainate-induced excitotoxicity by adenosine A2A receptor agonists and antagonists.

作者信息

Jones P A, Smith R A, Stone T W

机构信息

Division of Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, University of Glasgow, UK.

出版信息

Neuroscience. 1998 Jul;85(1):229-37. doi: 10.1016/s0306-4522(97)00613-1.

Abstract

The neuroprotective role of adenosine receptor agonists in various models of ischaemia and neuronal excitotoxicity has been attributed to adenosine A1 receptor activation. In this study we examine the role of the A2A receptor in the kainate model of excitotoxicity. Kainate (10 mg/kg) was administered systemically 10 min after the intraperitoneal injection of adenosine analogues. The A2A agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS21680) protected the hippocampus at concentrations of 0.1 and 0.01 mg/kg, but not at 2 microg/kg. The addition of the centrally acting adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine partially reduced protection only in the CA3a region, suggesting that only a small proportion of the protection was attributable to the A1 receptor. A less potent A2A agonist, N6-[2-(3,5-dimethyoxyphenyl)-2-(2-methylphenyl)-ethyl]adenosine (1 mg/kg), provided only partial protection against kainate. 4-(2-[7-Amino-2-[2-furyl][1,2,4]triazolo[2,3-a][1,3,5]triazin-5-yl -amino]ethyl)phenol, a selective A2A antagonist, also showed protection against kainate-induced neuronal death, when administered alone or in combination with CGS21680. These results show that adenosine A2A receptor activation is protective against excitotoxicity. The protection is largely independent of A, receptor activation or blockade.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验