Jones K J, Kim S S, North K N
Department of Clinical Genetics, Royal Alexandra Hospital for Children, Westmead, Sydney, Australia.
J Med Genet. 1998 May;35(5):379-86. doi: 10.1136/jmg.35.5.379.
Abnormalities of dystrophin, the sarcoglycans, and laminin alpha2 are responsible for a subset of the muscular dystrophies. In this study we aim to characterise the nature and frequency of abnormalities of these proteins in an Australian population and to formulate an investigative algorithm to aid in approaching the diagnosis of the muscular dystrophies. To reduce ascertainment bias, biopsies with dystrophic (n=131) and non-dystrophic myopathic (n=71) changes were studied with antibodies to dystrophin, alpha, beta, and gamma sarcoglycan, beta dystroglycan, and laminin alpha2, and results were correlated with clinical phenotype. Abnormalities of dystrophin, the sarcoglycans, or laminin alpha2 were present in 61/131 (47%) dystrophic biopsies and in 0/71 myopathic biopsies, suggesting that immunocytochemical study of dystrophin, the sarcoglycans, and laminin alpha2 may, in general, be restricted to patients with dystrophic biopsies. Two patients with mutations identified in gamma sarcoglycan had abnormal dystrophin (by immunocytochemistry and immunoblot), showing that abnormalities of dystrophin may be a secondary phenomenon. Therefore, biopsies should not be excluded from sarcoglycan analysis on the basis of abnormal dystrophin alone. The diagnostic yield was highest in those with severe, rapidly progressive limb-girdle weakness (92%). Laminin alpha2 deficiency was identified in 5/131 (4%) patients; 215 patients presented after infancy, indicating that abnormalities of laminin alpha2 are not limited to the congenital muscular dystrophy phenotype. Overall patterns of immunocytochemistry and immunoblotting provided a guide to mutation analysis and, on the basis of this study, we have formulated a diagnostic algorithm to guide the investigation of patients with muscular dystrophy.
抗肌萎缩蛋白、肌聚糖和层粘连蛋白α2异常是导致部分肌营养不良症的原因。在本研究中,我们旨在确定澳大利亚人群中这些蛋白质异常的性质和频率,并制定一种调查算法,以协助进行肌营养不良症的诊断。为减少确诊偏倚,我们使用抗抗肌萎缩蛋白、α、β和γ肌聚糖、β-肌营养不良蛋白聚糖和层粘连蛋白α2的抗体,对有营养不良性改变(n = 131)和非营养不良性肌病性改变(n = 71)的活检样本进行了研究,并将结果与临床表型相关联。抗肌萎缩蛋白、肌聚糖或层粘连蛋白α2异常存在于61/131(47%)的营养不良性活检样本中,而在0/71的肌病性活检样本中未发现,这表明一般来说,抗肌萎缩蛋白、肌聚糖和层粘连蛋白α2的免疫细胞化学研究可能仅限于有营养不良性活检样本的患者。两名在γ肌聚糖中发现突变的患者抗肌萎缩蛋白异常(通过免疫细胞化学和免疫印迹法),表明抗肌萎缩蛋白异常可能是一种继发现象。因此,不应仅基于抗肌萎缩蛋白异常就将活检样本排除在肌聚糖分析之外。诊断率在那些患有严重、快速进展的肢带肌无力的患者中最高(92%)。在5/131(4%)的患者中发现了层粘连蛋白α2缺乏;215名患者在婴儿期后发病,这表明层粘连蛋白α2异常并不局限于先天性肌营养不良症表型。免疫细胞化学和免疫印迹的总体模式为突变分析提供了指导,基于本研究,我们制定了一种诊断算法,以指导对肌营养不良症患者的调查。