Suppr超能文献

肾谷氨酰胺代谢中的谷氨酸转运不对称性。

Glutamate transport asymmetry in renal glutamine metabolism.

作者信息

Carter P, Welbourne T C

机构信息

Department of Cellular and Molecular Physiology, Louisiana State University Medical Center, Shreveport 71130, USA.

出版信息

Am J Physiol. 1998 May;274(5):E877-84. doi: 10.1152/ajpendo.1998.274.5.E877.

Abstract

D-Glutamate (Glu) was previously shown to block L-Glu uptake and accelerate glutaminase flux in cultured kidney cells [Welbourne, T. C., and D. Chevalier. Am. J. Physiol. 272 (Endocrinol. Metab. 35): E367-E370, 1997]. To test whether D-Glu would be taken up by the intact functioning kidney and effect the same response in vivo, male Sprague-Dawley rats were infused with D-Glu (2.6 mumol/min), and renal uptake of D- and L-Glu was determined from chemical and radiolabeled arteriovenous Glu concentration differences times renal plasma flow. The amount removed was then compared with that amount filtered to obtain the antiluminal contribution. In the controls, L-Glu uptake measured as net removal was 33% of the arterial L-Glu load and not different from that filtered, 27%; however, the unidirectional uptake was actually 58% of the arterial load, indicating that antiluminal uptake contributes at least half to the overall Glu consumption. Surprisingly, the kidneys showed a more avid removal of D-Glu, removing 73% of the arterial load, indicating uptake predominantly across the antiluminal cell surface. Furthermore, uptake of D-Glu was associated with a 55% reduction in L-Glu uptake, with the residual amount taken up equivalent to that filtered; D-Glu did not increase the excretion of the L-isomer. However, elevating plasma L-Glu concentration reduced uptake of the D-isomer, suggesting a shared antiluminal transporter. Thus there is an apparent asymmetrical distribution of the D-Glu transporter. Under these conditions, kidney cortex L-Glu content decreased 44%, whereas net glutamine (Gln) uptake increased sevenfold (170 +/- 89 to 1,311 +/- 219 nmol/min, P < 0.01) and unidirectional uptake nearly threefold (393 +/- 121 to 1,168 +/- 161 nmol/min, P < 0.05); this large Gln consumption was paralleled by an increase in ammonium production so that the ratio of production to consumption approaches 2, consistent with accelerated Gln deamidation and subsequent Glu deamination. These results point to a functional asymmetry (antiluminal vs. luminal) for Glu transporter activity, which potentially plays an important role in modulating Gln metabolism and renal function.

摘要

D-谷氨酸(Glu)先前已被证明可阻断培养的肾细胞中L-谷氨酸的摄取并加速谷氨酰胺酶通量[韦尔伯恩,T.C.,和D.谢瓦利埃。《美国生理学杂志》272卷(内分泌与代谢35):E367-E370,1997年]。为了测试D-谷氨酸是否会被完整功能的肾脏摄取并在体内产生相同的反应,给雄性斯普拉格-道利大鼠输注D-谷氨酸(2.6微摩尔/分钟),并根据化学和放射性标记的动静脉谷氨酸浓度差乘以肾血浆流量来测定肾脏对D-和L-谷氨酸的摄取。然后将去除的量与过滤的量进行比较,以获得抗腔面的贡献。在对照组中,以净去除量衡量的L-谷氨酸摄取量为动脉L-谷氨酸负荷的33%,与过滤量(27%)无差异;然而,单向摄取实际上是动脉负荷的58%,表明抗腔面摄取至少占谷氨酸总消耗量的一半。令人惊讶的是,肾脏对D-谷氨酸的去除更为活跃,去除了动脉负荷的73%,表明主要是通过抗腔面细胞表面摄取。此外,D-谷氨酸的摄取与L-谷氨酸摄取减少55%相关,剩余摄取量与过滤量相当;D-谷氨酸并未增加L-异构体的排泄。然而,提高血浆L-谷氨酸浓度会降低D-异构体的摄取,提示存在共同的抗腔面转运体。因此,D-谷氨酸转运体存在明显的不对称分布。在这些条件下,肾皮质L-谷氨酸含量降低44%,而净谷氨酰胺(Gln)摄取增加了7倍(170±89至1311±219纳摩尔/分钟,P<0.01),单向摄取增加了近3倍(393±121至1168±161纳摩尔/分钟,P<0.05);这种大量的谷氨酰胺消耗伴随着铵生成的增加,使得生成与消耗的比率接近2,这与谷氨酰胺脱酰胺和随后的谷氨酸脱氨基加速一致。这些结果表明谷氨酸转运体活性存在功能不对称(抗腔面与腔面),这可能在调节谷氨酰胺代谢和肾功能中起重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验