Suppr超能文献

自动调节、二氧化碳反应性与颅内压之间的相互作用:一种数学模型。

Interaction among autoregulation, CO2 reactivity, and intracranial pressure: a mathematical model.

作者信息

Ursino M, Lodi C A

机构信息

Department of Electronics, Computer Science and Systems, University of Bologna, Italy.

出版信息

Am J Physiol. 1998 May;274(5):H1715-28. doi: 10.1152/ajpheart.1998.274.5.H1715.

Abstract

The relationships among cerebral blood flow, cerebral blood volume, intracranial pressure (ICP), and the action of cerebrovascular regulatory mechanisms (autoregulation and CO2 reactivity) were investigated by means of a mathematical model. The model incorporates the cerebrospinal fluid (CSF) circulation, the intracranial pressure-volume relationship, and cerebral hemodynamics. The latter is based on the following main assumptions: the middle cerebral arteries behave passively following transmural pressure changes; the pial arterial circulation includes two segments (large and small pial arteries) subject to different autoregulation mechanisms; and the venous cerebrovascular bed behaves as a Starling resistor. A new aspect of the model exists in the description of CO2 reactivity in the pial arterial circulation and in the analysis of its nonlinear interaction with autoregulation. Simulation results, obtained at constant ICP using various combinations of mean arterial pressure and CO2 pressure, substantially support data on cerebral blood flow and velocity reported in the physiological literature concerning both the separate effects of CO2 and autoregulation and their nonlinear interaction. Simulations performed in dynamic conditions with varying ICP underline the existence of a significant correlation between ICP dynamics and cerebral hemodynamics in response to CO2 changes. This correlation may significantly increase in pathological subjects with poor intracranial compliance and reduced CSF outflow. In perspective, the model can be used to study ICP and blood velocity time patterns in neurosurgical patients in order to gain a deeper insight into the pathophysiological mechanisms leading to intracranial hypertension and secondary brain damage.

摘要

通过数学模型研究了脑血流量、脑血容量、颅内压(ICP)以及脑血管调节机制(自动调节和二氧化碳反应性)的作用之间的关系。该模型纳入了脑脊液(CSF)循环、颅内压-容积关系和脑血流动力学。后者基于以下主要假设:大脑中动脉随跨壁压力变化被动变化;软脑膜动脉循环包括两段(大、小软脑膜动脉),受不同的自动调节机制影响;静脉脑血管床表现为一个斯塔林电阻器。该模型的一个新方面在于对软脑膜动脉循环中二氧化碳反应性的描述以及对其与自动调节的非线性相互作用的分析。在恒定颅内压下使用平均动脉压和二氧化碳压力的各种组合获得的模拟结果,在很大程度上支持了生理学文献中报道的关于二氧化碳和自动调节的单独作用及其非线性相互作用的脑血流量和速度数据。在颅内压变化的动态条件下进行的模拟强调了颅内压动态与脑血流动力学对二氧化碳变化反应之间存在显著相关性。在颅内顺应性差和脑脊液流出减少的病理受试者中,这种相关性可能会显著增加。从长远来看,该模型可用于研究神经外科患者的颅内压和血流速度时间模式,以便更深入地了解导致颅内高压和继发性脑损伤的病理生理机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验