Suppr超能文献

时域方法定量评估脑血流自动调节的研究进展:综述及建议。这是一篇来自脑血管研究网络(CARNet)的白皮书。

Time-domain methods for quantifying dynamic cerebral blood flow autoregulation: Review and recommendations. A white paper from the Cerebrovascular Research Network (CARNet).

机构信息

Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada.

Institute of Neural Engineering, Graz University of Technology, Graz, Austria.

出版信息

J Cereb Blood Flow Metab. 2024 Sep;44(9):1480-1514. doi: 10.1177/0271678X241249276. Epub 2024 Apr 30.

Abstract

Cerebral Autoregulation (CA) is an important physiological mechanism stabilizing cerebral blood flow (CBF) in response to changes in cerebral perfusion pressure (CPP). By maintaining an adequate, relatively constant supply of blood flow, CA plays a critical role in brain function. Quantifying CA under different physiological and pathological states is crucial for understanding its implications. This knowledge may serve as a foundation for informed clinical decision-making, particularly in cases where CA may become impaired. The quantification of CA functionality typically involves constructing models that capture the relationship between CPP (or arterial blood pressure) and experimental measures of CBF. Besides describing normal CA function, these models provide a means to detect possible deviations from the latter. In this context, a recent white paper from the Cerebrovascular Research Network focused on Transfer Function Analysis (TFA), which obtains frequency domain estimates of dynamic CA. In the present paper, we consider the use of time-domain techniques as an alternative approach. Due to their increased flexibility, time-domain methods enable the mitigation of measurement/physiological noise and the incorporation of nonlinearities and time variations in CA dynamics. Here, we provide practical recommendations and guidelines to support researchers and clinicians in effectively utilizing these techniques to study CA.

摘要

脑自动调节(CA)是一种重要的生理机制,可稳定脑血流(CBF)以响应脑灌注压(CPP)的变化。通过维持足够的、相对恒定的血液供应,CA 在脑功能中起着关键作用。量化不同生理和病理状态下的 CA 对于理解其影响至关重要。这方面的知识可能成为明智临床决策的基础,特别是在 CA 可能受损的情况下。CA 功能的量化通常涉及构建模型,这些模型捕捉 CPP(或动脉血压)与 CBF 的实验测量之间的关系。除了描述正常的 CA 功能外,这些模型还提供了一种检测后者可能出现偏差的方法。在这种情况下,脑血管研究网络的一份最新白皮书重点介绍了传递函数分析(TFA),它可以获得 CA 的频域估计。在本文中,我们考虑将时域技术用作替代方法。由于其灵活性增加,时域方法能够减轻测量/生理噪声,并将 CA 动力学中的非线性和时间变化纳入其中。在这里,我们提供实用的建议和指南,以支持研究人员和临床医生有效地利用这些技术来研究 CA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df60/11418733/6ed5831ff517/10.1177_0271678X241249276-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验