Jain R K, Piskorz C F, Huang B G, Locke R D, Han H L, Koenig A, Varki A, Matta K L
Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
Glycobiology. 1998 Jul;8(7):707-17. doi: 10.1093/glycob/8.7.707.
The selectins interact in important normal and pathological situations with certain sialylated, fucosylated glycoconjugate ligands containing sialyl Lewisx(Neu5Acalpha2-3Galbeta1-4(Fucalpha1-3)GlcN Ac). Much effort has gone into the synthesis of sialylated and sulfated Lewisxanalogs as competitive ligands for the selectins. Since the natural selectin ligands GlyCAM-1 and PSGL-1 carry sialyl Lewisxas part of a branched Core 2 O-linked structure, we recently synthesized Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-6(SE-3Galbeta1++ +-3)GalNAc1alphaOMe and found it to be a moderately superior ligand for L and P-selectin (Koenig et al. , Glycobiology 7, 79-93, 1997). Other studies have shown that sulfate esters can replace sialic acid in some selectin ligands (Yeun et al. , Biochemistry, 31, 9126-9131, 1992; Imai et al. , Nature, 361, 555, 1993). Based upon these observations, we hypothesized that Neu5Acalpha2-3Galbeta1-3GalNAc might have the capability of interacting with L- and P-selectin. To examine this hypothesis, we synthesized Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-6(Neu5Acalpha2++ +-3Galbeta1-3)-GalNAc alpha1-OB, which was found to be 2- to 3-fold better than sialyl Lexfor P and L selectin, respectively. We also report the synthesis of an unusual structure GalNAcbeta1-4(Fucalpha1- 3)GlcNAcbeta1-OMe (GalNAc-Lewisx-O-methyl glycoside), which also proved to be a better inhibitor of L- and P-selectin than sialyl Lewisx-OMe. Combining this with our knowledge of Core 2 branched structures, we have synthesized a molecule that is 5- to 6-fold better at inhibiting L- and P-selectin than sialyl Lewisx-OMe, By contrast to unbranched structures, substitution of a sulfate ester group for a sialic acid residue in such a molecule resulted in a considerable loss of inhibition ability. Thus, the combination of a sialic acid residue on the primary (beta1-3) arm, and a modified Lexunit on the branched (beta1-6) arm on an O-linked Core 2 structure generated a monovalent synthetic oliogosaccharide inhibitor superior to SLexfor both L- and P-selectin.
在重要的正常和病理情况下,选择素与某些含有唾液酸化、岩藻糖化糖缀合物配体相互作用,这些配体含有唾液酸化路易斯x(Neu5Acalpha2-3Galbeta1-4(Fucalpha1-3)GlcN Ac)。人们付出了很多努力来合成唾液酸化和硫酸化的路易斯x类似物作为选择素的竞争性配体。由于天然的选择素配体GlyCAM-1和PSGL-1带有唾液酸化路易斯x作为分支核心2 O-连接结构的一部分,我们最近合成了Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-6(SE-3Galbeta1++ +-3)GalNAc1alphaOMe,并发现它是L和P选择素的中等优势配体(Koenig等人,《糖生物学》7,79-93,1997)。其他研究表明,硫酸酯可以在一些选择素配体中取代唾液酸(Yeun等人,《生物化学》,31,9126-9131,1992;Imai等人,《自然》,361,555,1993)。基于这些观察结果,我们推测Neu5Acalpha2-3Galbeta1-3GalNAc可能具有与L-和P-选择素相互作用的能力。为了验证这一假设,我们合成了Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-6(Neu5Acalpha2++ +-3Galbeta1-3)-GalNAc alpha1-OB,发现它对P和L选择素的亲和力分别比唾液酸化路易斯x高2至3倍。我们还报道了一种不寻常结构GalNAcbeta1-4(Fucalpha1- 3)GlcNAcbeta1-OMe(GalNAc-路易斯x-O-甲基糖苷)的合成,它也被证明是比唾液酸化路易斯x-OMe更好的L-和P-选择素抑制剂。结合我们对核心2分支结构的了解,我们合成了一种分子,其对L-和P-选择素的抑制能力比唾液酸化路易斯x-OMe高5至6倍。与非分支结构相比,在这样的分子中用硫酸酯基团取代唾液酸残基会导致抑制能力的显著丧失。因此,在O-连接的核心2结构上,初级(beta1-3)臂上的唾液酸残基与分支(beta1-6)臂上的修饰路易斯x单元的组合产生了一种单价合成寡糖抑制剂,对L-和P-选择素均优于唾液酸化路易斯x。