Suppr超能文献

利用时域模型和先验知识进行通用频域拟合。

Versatile frequency domain fitting using time domain models and prior knowledge.

作者信息

Slotboom J, Boesch C, Kreis R

机构信息

Department of MR Spectroscopy and Methodology, University and Inselspital, Berne, Switzerland.

出版信息

Magn Reson Med. 1998 Jun;39(6):899-911. doi: 10.1002/mrm.1910390607.

Abstract

An iterative nonlinear least-squares fitting algorithm in the frequency domain using time domain models for quantification of complex frequency domain MR spectra is presented. The algorithm allows incorporation of prior knowledge and has both the advantage of time-domain fitting with respect to handling the problem of missing data points and truncated data sets and of frequency-domain fitting with respect to multiple frequency-selective fitting. The described algorithm can handle, in addition to Lorentzian and Gaussian lineshapes, Voigt and nonanalytic lineshapes. The program allows the user the design of his own fitting strategy to optimize the probability of reaching the global least-squares minimum. The application of the fitting program is illustrated with examples from in vivo 1H-, 31P-, and 13C-MR spectroscopy.

摘要

提出了一种频域中的迭代非线性最小二乘拟合算法,该算法使用时域模型对复杂频域磁共振波谱进行量化。该算法允许纳入先验知识,并且在处理数据点缺失和数据集截断问题方面具有时域拟合的优势,在多频选择拟合方面具有频域拟合的优势。除了洛伦兹和高斯线形外,所描述的算法还可以处理沃伊特和非解析线形。该程序允许用户设计自己的拟合策略,以优化达到全局最小二乘最小值的概率。通过体内1H、31P和13C磁共振波谱的示例说明了拟合程序的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验