Suppr超能文献

Heat-shock proteins in axoplasm: high constitutive levels and transfer of inducible isoforms from glia.

作者信息

Sheller R A, Smyers M E, Grossfeld R M, Ballinger M L, Bittner G D

机构信息

Department of Zoology, University of Texas at Austin, 78712, USA.

出版信息

J Comp Neurol. 1998 Jun 22;396(1):1-11. doi: 10.1002/(sici)1096-9861(19980622)396:1<1::aid-cne1>3.0.co;2-4.

Abstract

To characterize heat-shock proteins (HSPs) of the 70-kDa family in the crayfish medial giant axon (MGA), we analyzed axoplasmic proteins separately from proteins of the glial sheath. Several different molecular weight isoforms of constitutive HSP 70s that were detected on immunoblots were approximately 1-3% of the total protein in the axoplasm of MGAs. To investigate inducible HSPs, MGAs were heat shocked in vitro or in vivo, then the axon was bathed in radiolabeled amino acid for 4 hours. After either heat-shock treatment, protein synthesis in the glial sheath was decreased compared with that of control axons, and newly synthesized proteins of 72 kDa, 84 kDa, and 87 kDa appeared in both the axoplasm and the sheath. Because these radiolabeled proteins were present in MGAs only after heat-shock treatments, we interpreted the newly synthesized proteins of 72 kDa, 84 kDa, and 87 kDa to be inducible HSPs. Furthermore, the 72-kDa radiolabeled band in heat-shocked axoplasm and glial sheath samples comigrated with a band possessing HSP 70 immunoreactivity. The amount of heat-induced proteins in axoplasm samples was greater after a 2-hour heat shock than after a 1-hour heat shock. These data indicate that MGA axoplasm contains relatively high levels of constitutive HSP 70s and that, after heat shock, MGA axoplasm obtains inducible HSPs of 72 kDa, 84 kDa, and 87 kDa from the glial sheath. These constitutive and inducible HSPs may help MGAs maintain essential structures and functions following acute heat shock.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验