Suppr超能文献

横断面数据分析中的患病率比值比或患病率比:该如何处理?

Prevalence odds ratio or prevalence ratio in the analysis of cross sectional data: what is to be done?

作者信息

Thompson M L, Myers J E, Kriebel D

机构信息

Department of Biostatistics, University of Washington, Seattle 98195, USA.

出版信息

Occup Environ Med. 1998 Apr;55(4):272-7. doi: 10.1136/oem.55.4.272.

Abstract

OBJECTIVES

To review the appropriateness of the prevalence odds ratio (POR) and the prevalence ratio (PR) as effect measures in the analysis of cross sectional data and to evaluate different models for the multivariate estimation of the PR.

METHODS

A system of linear differential equations corresponding to a dynamic model of a cohort with a chronic disease was developed. At any point in time, a cross sectional analysis of the people then in the cohort provided a prevalence based measure of the effect of exposure on disease. This formed the basis for exploring the relations between the POR, the PR, and the incidence rate ratio (IRR). Examples illustrate relations for various IRRs, prevalences, and differential exodus rates. Multivariate point and interval estimation of the PR by logistic regression is illustrated and compared with the results from proportional hazards regression (PH) and generalised linear modelling (GLM).

RESULTS

The POR is difficult to interpret without making restrictive assumptions and the POR and PR may lead to different conclusions with regard to confounding and effect modification. The PR is always conservative relative to the IRR and, if PR > 1, the POR is always > PR. In a fixed cohort and with an adverse exposure, the POR is always > or = IRR, but in a dynamic cohort with sufficient underlying follow up the POR may overestimate or underestimate the IRR, depending on the duration of follow up. Logistic regression models provide point and interval estimates of the PR (and POR) but may be intractable in the presence of many covariates. Proportional hazards and generalised linear models provide statistical methods directed specifically at the PR, but the interval estimation in the case of PH is conservative and the GLM procedure may require constrained estimation.

CONCLUSIONS

The PR is conservative, consistent, and interpretable relative to the IRR and should be used in preference to the POR. Multivariate estimation of the PR should be executed by means of generalised linear models or, conservatively, by proportional hazards regression.

摘要

目的

回顾患病率比值比(POR)和患病率比(PR)作为横断面数据分析中效应量的适用性,并评估PR多元估计的不同模型。

方法

建立了一个与患有慢性病队列的动态模型相对应的线性微分方程组。在任何时间点,对当时队列中的人群进行横断面分析,得出基于患病率的暴露对疾病影响的测量值。这构成了探索POR、PR和发病率比(IRR)之间关系的基础。实例说明了各种IRR、患病率和不同退出率之间的关系。阐述了通过逻辑回归对PR进行多元点估计和区间估计,并与比例风险回归(PH)和广义线性模型(GLM)的结果进行比较。

结果

如果不做限制性假设,POR很难解释,并且在混杂和效应修饰方面,POR和PR可能会得出不同的结论。PR相对于IRR总是保守的,如果PR>1,POR总是>PR。在固定队列中且存在不良暴露时,POR总是≥IRR,但在有足够潜在随访的动态队列中,POR可能高估或低估IRR,这取决于随访持续时间。逻辑回归模型提供PR(和POR)的点估计和区间估计,但在存在许多协变量的情况下可能难以处理。比例风险模型和广义线性模型提供专门针对PR的统计方法,但PH情况下的区间估计是保守的,GLM程序可能需要约束估计。

结论

相对于IRR,PR是保守的、一致的且可解释的,应优先于POR使用。PR的多元估计应通过广义线性模型进行,或者保守地通过比例风险回归进行。

相似文献

引用本文的文献

4

本文引用的文献

3
5
Prevalence odds ratio v prevalence ratio--a response.患病率比值比与患病率比——回应
Occup Environ Med. 1995 Nov;52(11):781-2. doi: 10.1136/oem.52.11.781-a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验