Bastos Leonardo Soares, Oliveira Raquel de Vasconcellos Carvalhaes de, Velasque Luciane de Souza
Cad Saude Publica. 2015 Mar;31(3):487-95. doi: 10.1590/0102-311x00175413.
In the last decades, the use of the epidemiological prevalence ratio (PR) instead of the odds ratio has been debated as a measure of association in cross-sectional studies. This article addresses the main difficulties in the use of statistical models for the calculation of PR: convergence problems, availability of tools and inappropriate assumptions. We implement the direct approach to estimate the PR from binary regression models based on two methods proposed by Wilcosky & Chambless and compare with different methods. We used three examples and compared the crude and adjusted estimate of PR, with the estimates obtained by use of log-binomial, Poisson regression and the prevalence odds ratio (POR). PRs obtained from the direct approach resulted in values close enough to those obtained by log-binomial and Poisson, while the POR overestimated the PR. The model implemented here showed the following advantages: no numerical instability; assumes adequate probability distribution and, is available through the R statistical package.
在过去几十年中,在横断面研究中使用流行病学患病率比(PR)而非比值比作为关联度量一直存在争议。本文探讨了使用统计模型计算PR时的主要困难:收敛问题、工具可用性和不恰当假设。我们基于Wilcosky和Chambless提出的两种方法,从二元回归模型实施直接估计PR的方法,并与不同方法进行比较。我们使用了三个例子,并比较了PR的粗估计值和调整估计值,以及通过对数二项式、泊松回归和患病率比值比(POR)获得的估计值。从直接方法获得的PR值与通过对数二项式和泊松回归获得的值足够接近,而POR高估了PR。这里实施的模型具有以下优点:没有数值不稳定性;假设概率分布适当,并且可以通过R统计软件包获得。