Caniça M M, Caroff N, Barthélémy M, Labia R, Krishnamoorthy R, Paul G, Dupret J M
Laboratoire de Recherche en Microbiologie, UFR Cochin-Port-Royal, Paris, France.
Antimicrob Agents Chemother. 1998 Jun;42(6):1323-8. doi: 10.1128/AAC.42.6.1323.
At this time an amino acid substitution at position 276 in the TEM-1 enzyme is associated with an additional substitution at position 69 in natural beta-lactamase-inhibitor-resistant (IRT) beta-lactamases. The effect of the Asn276-->Asp substitution on resistance was assessed with the Asn276Asp variant, generated by site-directed mutagenesis. The mutant was resistant to beta-lactamase inhibitors, but the MICs of amoxicillin combined with clavulanic acid or tazobactam were strikingly different for E. coli strains producing the Asn276Asp variant and those producing naturally occurring IRTs with single or double substitutions. The inhibitory effects of clavulanic acid and tazobactam were the same in IRTs with substitutions at position 69 (IRT-5 and IRT-6). The effect of clavulanic acid on the MICs of amoxicillin for the Asn276Asp variant was greater than that of tazobactam. In IRTs with double substitutions, at positions 69 plus 276 (IRT-4, IRT-7, and IRT-8) or 69 plus 275 (IRT-14), tazobactam was a more potent inhibitor than clavulanic acid. The effect of the Asn276-->Asp substitution on the values of the kinetic constants and the concentration required to inhibit by 50% the hydrolysis of benzylpenicillin confirms that this single mutation is responsible for resistance to beta-lactamase inhibitors. Molecular modeling of the Asn276Asp mutant shows that Asp276 can form two salt bonds with Arg244 close to the penicillin-binding cavity. The addition of the Asp276 mutation to that preexisting at position 69 confers a higher selective advantage to bacteria, as shown by the reduction in beta-lactamase inhibitor efficiencies of the double variants. Therefore, the emergence of multiple mutations in TEM beta-lactamases by virtue of the use of beta-lactamase inhibitors increases selection pressure resulting in the convergent evolution of resistant strains.
此时,TEM-1酶第276位的氨基酸替换与天然耐β-内酰胺酶抑制剂(IRT)β-内酰胺酶第69位的另一个替换相关。通过定点诱变产生的Asn276Asp变体评估了Asn276→Asp替换对耐药性的影响。该突变体对β-内酰胺酶抑制剂耐药,但对于产生Asn276Asp变体的大肠杆菌菌株和产生具有单替换或双替换的天然IRT的菌株,阿莫西林与克拉维酸或他唑巴坦联合使用时的最低抑菌浓度(MIC)显著不同。克拉维酸和他唑巴坦对第69位有替换的IRT(IRT-5和IRT-6)的抑制作用相同。克拉维酸对Asn276Asp变体阿莫西林MIC的影响大于他唑巴坦。在第69位加276位(IRT-4、IRT-7和IRT-8)或69位加275位(IRT-14)有双替换的IRT中,他唑巴坦是比克拉维酸更有效的抑制剂。Asn276→Asp替换对动力学常数的值以及抑制苄青霉素水解50%所需浓度的影响证实,这一单突变导致了对β-内酰胺酶抑制剂的耐药性。Asn276Asp突变体的分子模型显示,Asp276可与靠近青霉素结合腔的Arg244形成两个盐键。如双变体β-内酰胺酶抑制剂效率的降低所示,在第69位预先存在的突变上添加Asp276突变赋予细菌更高的选择优势。因此,由于使用β-内酰胺酶抑制剂,TEMβ-内酰胺酶中多个突变的出现增加了选择压力,导致耐药菌株的趋同进化。