Malakauskas S M, Mayo S L
Division of Biology, California Institute of Technology, Pasadena 91125, USA.
Nat Struct Biol. 1998 Jun;5(6):470-5. doi: 10.1038/nsb0698-470.
Here we report the use of an objective computer algorithm in the design of a hyperstable variant of the Streptococcal protein Gbeta1 domain (Gbeta1). The designed seven-fold mutant, Gbeta1-c3b4, has a melting temperature in excess of 100 degrees C and an enhancement in thermodynamic stability of 4.3 kcal mol(-1) at 50 degrees C over the wild-type protein. Gbeta1-c3b4 maintains the Gbeta1 fold, as determined by nuclear magnetic resonance spectroscopy, and also retains a significant level of binding to human IgG in qualitative comparisons with wild type. The basis of the stability enhancement appears to have multiple components including optimized core packing, increased burial of hydrophobic surface area, more favorable helix dipole interactions, and improvement of secondary structure propensity. The design algorithm is able to model such complex contributions simultaneously using empirical physical/chemical potential functions and a combinatorial optimization algorithm based on the dead-end elimination theorem. Because the design methodology is based on general principles, there is the potential of applying the methodology to the stabilization of other unrelated protein folds.
在此,我们报告了一种客观计算机算法在设计链球菌蛋白Gβ1结构域(Gβ1)的超稳定变体中的应用。设计的七重突变体Gβ1-c3b4的解链温度超过100℃,在50℃时的热力学稳定性比野生型蛋白提高了4.3千卡/摩尔。通过核磁共振光谱测定,Gβ1-c3b4保持了Gβ1折叠结构,并且在与野生型的定性比较中,与人类IgG的结合水平也保持在显著水平。稳定性增强的基础似乎有多个组成部分,包括优化的核心堆积、增加疏水表面积的埋藏、更有利的螺旋偶极相互作用以及二级结构倾向的改善。该设计算法能够使用经验物理/化学势函数和基于死端消除定理的组合优化算法同时对这些复杂贡献进行建模。由于设计方法基于通用原则,因此有潜力将该方法应用于稳定其他不相关的蛋白质折叠结构。