Iannuzzelli Jacob A, Bacik John-Paul, Moore Eric J, Shen Zhuofan, Irving Ellen M, Vargas David A, Khare Sagar D, Ando Nozomi, Fasan Rudi
Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.
Biochemistry. 2022 May 25;61(11):1041-54. doi: 10.1021/acs.biochem.2c00033.
Enhancing the thermostability of enzymes without impacting their catalytic function represents an important yet challenging goal in protein engineering and biocatalysis. We recently introduced a novel method for enzyme thermostabilization that relies on the computationally guided installation of genetically encoded thioether "staples" into a protein via cysteine alkylation with the noncanonical amino acid -2-bromoethyl tyrosine (O2beY). Here, we demonstrate the functionality of an expanded set of electrophilic amino acids featuring chloroacetamido, acrylamido, and vinylsulfonamido side-chain groups for protein stapling using this strategy. Using a myoglobin-based cyclopropanase as a model enzyme, our studies show that covalent stapling with -chloroacetamido-phenylalanine (pCaaF) provides higher stapling efficiency and enhanced stability (thermodynamic and kinetic) compared to the other stapled variants and the parent protein. Interestingly, molecular simulations of conformational flexibility of the cross-links show that the pCaaF staple allows fewer energetically feasible conformers than the other staples, and this property may be a broader indicator of stability enhancement. Using this strategy, pCaaF-stapled variants with significantly enhanced stability against thermal denaturation (Δ' = +27 °C) and temperature-induced heme loss (Δ = +30 °C) were obtained while maintaining high levels of catalytic activity and stereoselectivity. Crystallographic analyses of singly and doubly stapled variants provide key insights into the structural basis for stabilization, which includes both direct interactions of the staples with protein residues and indirect interactions through adjacent residues involved in heme binding. This work expands the toolbox of protein stapling strategies available for protein stabilization.
在不影响酶催化功能的前提下提高其热稳定性,是蛋白质工程和生物催化领域一个重要但具有挑战性的目标。我们最近引入了一种新的酶热稳定化方法,该方法依赖于通过非天然氨基酸-2-溴乙基酪氨酸(O2beY)对半胱氨酸进行烷基化反应,以计算引导的方式将基因编码的硫醚“订书钉”安装到蛋白质中。在此,我们展示了一组扩展的亲电氨基酸的功能,这些氨基酸具有氯乙酰胺基、丙烯酰胺基和乙烯基磺酰胺基侧链基团,可用于采用此策略的蛋白质订书钉连接。以基于肌红蛋白的环丙烷酶作为模型酶,我们的研究表明,与其他订书钉连接变体和亲本蛋白相比,用对氯乙酰胺基苯丙氨酸(pCaaF)进行共价订书钉连接可提供更高的订书钉连接效率和更高的稳定性(热力学和动力学稳定性)。有趣的是,交联构象灵活性的分子模拟表明,pCaaF订书钉允许的能量上可行的构象比其他订书钉更少,并且这一特性可能是稳定性增强的更广泛指标。采用此策略,获得了对热变性(Δ' = +27 °C)和温度诱导的血红素损失(Δ = +30 °C)具有显著增强稳定性的pCaaF订书钉连接变体,同时保持了高水平的催化活性和立体选择性。单订书钉连接和双订书钉连接变体的晶体学分析为稳定化的结构基础提供了关键见解,其中包括订书钉与蛋白质残基的直接相互作用以及通过参与血红素结合的相邻残基的间接相互作用。这项工作扩展了可用于蛋白质稳定化的蛋白质订书钉连接策略工具箱。