Jeon B S, Jeong J M, Park S S, Kim J M, Chang Y S, Song H C, Kim K M, Yoon K Y, Lee M C, Lee S B
Department of Neurology, College of Medicine, Seoul National University, Seoul National University Hospital, Korea.
Ann Neurol. 1998 Jun;43(6):792-800. doi: 10.1002/ana.410430614.
The clinical distinction between dopa-responsive dystonia (DRD) and juvenile Parkinson's disease JPD) can pose a diagnostic challenge. Both conditions are dopa responsive. However, long-term L-dopa benefit is very different between the two. The difference in the prognosis is due to presence or absence of nigral cell loss. In JPD, there is degenerative nigral cell loss, whereas there are enzymatic defects in dopamine synthesis without cell loss in DRD. Mutations have been found in the GTP cyclohydrolase I (GCH-I) and tyrosine hydroxylase genes in DRD. As the discovered mutations are multiple and more are expected to be found, it is difficult to confirm or exclude DRD by mutation studies. Measurement of cerebrospinal fluid (CSF) neopterin will detect DRD from mutations in the GCH-I gene but not from mutations in tyrosine hydroxylase. The dopamine transporter (DAT) is a protein in the dopaminergic nerve terminals. (1R)-2beta-Carbomethoxy-3beta-(4-[123I]iodophenyl)tropane ([123I]beta-CIT) is a ligand for the DAT, and it was shown to be a useful nuclear imaging marker for neurons that degenerate in Parkinson's disease (PD). As DRD was shown to have a normal DAT without nigral cell loss in a postmortem study, we predicted that the DAT measured in vivo by nuclear imaging will be normal in DRD and will differentiate DRD from JPD. Therefore, we performed [123I]beta-CIT single-photon emission computed tomography ([123I]beta-CIT SPECT) in clinically diagnosed DRD, PD, and JPD, and examined whether DAT imaging can differentiate DRD from PD and JPD. We then examined whether DAT imaging can provide a screening tool for molecular genetic studies, by studying mutations in the candidate gene GCH-I and measuring CSF neopterin. Five females (4 from two families, and 1 sporadic) were diagnosed as DRD based on early-onset foot dystonia and progressive parkinsonism beginning at ages 7 to 12. All patients were functioning normally on L-dopa 100 to 250 mg/day for up to 8 years. SPECT imaging was obtained after intravenous injection of [123I]beta-CIT; 15 healthy volunteers served as normal control, and 6 PD and 1 JPD as disease controls. [123I]beta-CIT striatal binding was normal in DRD, whereas it was markedly decreased in PD and JPD. Gene analysis showed a novel nonsense mutation in the GCH-I gene in one family. No mutation was found in the other family or in the sporadic case. CSF neopterin was markedly decreased in the 4 tested patients. [123I]beta-CIT SPECT is a sensitive method for probing the integrity of nigrostriatal dopaminergic nerve terminals. A normal striatal DAT in a parkinsonian patient is evidence for a nondegenerative cause of parkinsonism and differentiates DRD from JPD. Finding a new mutation in one family and failure to demonstrate mutations in the putative gene in other cases supports the usefulness of DAT imaging in diagnosing DRD.
多巴反应性肌张力障碍(DRD)与青少年帕金森病(JPD)的临床鉴别可能构成诊断挑战。这两种疾病均对多巴有反应。然而,两者长期使用左旋多巴的疗效差异很大。预后差异归因于黑质细胞是否缺失。在青少年帕金森病中,存在黑质细胞变性丢失,而在多巴反应性肌张力障碍中,多巴胺合成存在酶缺陷但无细胞丢失。在多巴反应性肌张力障碍中已发现鸟苷三磷酸环化水解酶I(GCH-I)和酪氨酸羟化酶基因发生突变。由于已发现的突变种类繁多,预计还会发现更多,因此通过突变研究很难确诊或排除多巴反应性肌张力障碍。脑脊液(CSF)新蝶呤的测定可检测出因GCH-I基因突变导致的多巴反应性肌张力障碍,但无法检测出酪氨酸羟化酶基因突变导致的情况。多巴胺转运体(DAT)是多巴胺能神经末梢中的一种蛋白质。(1R)-2β-甲氧羰基-3β-(4-[123I]碘苯基)托烷([123I]β-CIT)是多巴胺转运体的配体,已证明它是帕金森病(PD)中发生变性的神经元的一种有用的核成像标记物。在一项尸检研究中显示,多巴反应性肌张力障碍的多巴胺转运体正常且无黑质细胞丢失,因此我们推测通过核成像在体内测量的多巴胺转运体在多巴反应性肌张力障碍中会正常,并且可将多巴反应性肌张力障碍与青少年帕金森病区分开来。因此,我们对临床诊断为多巴反应性肌张力障碍、帕金森病和青少年帕金森病的患者进行了[123I]β-CIT单光子发射计算机断层扫描([123I]β-CIT SPECT),并检查多巴胺转运体成像是否能将多巴反应性肌张力障碍与帕金森病和青少年帕金森病区分开来。然后,我们通过研究候选基因GCH-I中的突变并测量脑脊液新蝶呤,检查多巴胺转运体成像是否可为分子遗传学研究提供一种筛查工具。5名女性(其中4名来自两个家族,1名散发)基于7至12岁时出现的早发性足部肌张力障碍和进行性帕金森综合征被诊断为多巴反应性肌张力障碍。所有患者服用100至250毫克/天的左旋多巴,功能正常长达8年。静脉注射[123I]β-CIT后进行SPECT成像;15名健康志愿者作为正常对照,6名帕金森病患者和1名青少年帕金森病患者作为疾病对照。多巴反应性肌张力障碍患者的[123I]β-CIT纹状体结合正常,而帕金森病和青少年帕金森病患者的结合明显减少。基因分析显示一个家族的GCH-I基因存在一种新的无义突变。在另一个家族或散发病例中未发现突变。4名受试患者的脑脊液新蝶呤明显降低。[123I]β-CIT SPECT是探测黑质纹状体多巴胺能神经末梢完整性的一种敏感方法。帕金森病患者纹状体多巴胺转运体正常表明帕金森综合征存在非退行性病因,并可将多巴反应性肌张力障碍与青少年帕金森病区分开来。在一个家族中发现新突变而在其他病例中未在假定基因中发现突变支持了多巴胺转运体成像在诊断多巴反应性肌张力障碍中的有用性。