Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, United Kingdom.
Bateson Centre, Firth Court, University of Sheffield, Sheffield S10 2TN, United Kingdom.
J Neurosci. 2022 Jan 26;42(4):702-716. doi: 10.1523/JNEUROSCI.0653-21.2021. Epub 2021 Dec 7.
The Parkinson's disease (PD) risk gene GTP cyclohydrolase 1 (GCH1) catalyzes the rate-limiting step in tetrahydrobiopterin (BH4) synthesis, an essential cofactor in the synthesis of monoaminergic neurotransmitters. To investigate the mechanisms by which GCH1 deficiency may contribute to PD, we generated a loss of function zebrafish mutant (), using CRISPR/Cas technology. zebrafish develop marked monoaminergic neurotransmitter deficiencies by 5 d postfertilization (dpf), movement deficits by 8 dpf and lethality by 12 dpf. Tyrosine hydroxylase (Th) protein levels were markedly reduced without loss of ascending dopaminergic (DAergic) neurons. L-DOPA treatment of larvae improved survival without ameliorating the motor phenotype. RNAseq of larval brain tissue identified highly upregulated transcripts involved in innate immune response. Subsequent experiments provided morphologic and functional evidence of microglial activation in The results of our study suggest that GCH1 deficiency may unmask early, subclinical parkinsonism and only indirectly contribute to neuronal cell death via immune-mediated mechanisms. Our work highlights the importance of functional validation for genome-wide association studies (GWAS) risk factors and further emphasizes the important role of inflammation in the pathogenesis of PD. Genome-wide association studies have now identified at least 90 genetic risk factors for sporadic Parkinson's disease (PD). Zebrafish are an ideal tool to determine the mechanistic role of genome-wide association studies (GWAS) risk genes in a vertebrate animal model. The discovery of GTP cyclohydrolase 1 (GCH1) as a genetic risk factor for PD was counterintuitive, GCH1 is the rate-limiting enzyme in the synthesis of dopamine (DA), mutations had previously been described in the non-neurodegenerative movement disorder dopa-responsive dystonia (DRD). Rather than causing DAergic cell death (as previously hypothesized by others), we now demonstrate that GCH1 impairs tyrosine hydroxylase (Th) homeostasis and activates innate immune mechanisms in the brain and provide evidence of microglial activation and phagocytic activity.
帕金森病(PD)风险基因 GTP 环水解酶 1(GCH1)催化四氢生物蝶呤(BH4)合成的限速步骤,BH4 是单胺能神经递质合成的必需辅助因子。为了研究 GCH1 缺陷如何导致 PD,我们使用 CRISPR/Cas 技术生成了一个功能丧失的斑马鱼突变体()。斑马鱼在受精后 5 天(dpf)表现出明显的单胺能神经递质缺乏,在 8 天 dpf 时出现运动缺陷,在 12 天 dpf 时出现致死性。酪氨酸羟化酶(Th)蛋白水平明显降低,而上升的多巴胺能(DAergic)神经元没有丢失。幼虫的 L-DOPA 治疗提高了存活率,但没有改善运动表型。幼虫脑组织的 RNAseq 鉴定出高度上调的参与固有免疫反应的转录本。随后的实验提供了 中微胶质细胞激活的形态和功能证据。我们的研究结果表明,GCH1 缺陷可能会揭示早期的亚临床帕金森病,并且仅通过免疫介导的机制间接导致神经元细胞死亡。我们的工作强调了对全基因组关联研究(GWAS)风险因素进行功能验证的重要性,并进一步强调了炎症在 PD 发病机制中的重要作用。全基因组关联研究现已确定至少 90 个散发性帕金森病(PD)的遗传风险因素。斑马鱼是确定全基因组关联研究(GWAS)风险基因在脊椎动物模型中的机制作用的理想工具。GTP 环水解酶 1(GCH1)作为 PD 的遗传风险因素的发现是违反直觉的,GCH1 是多巴胺(DA)合成的限速酶,先前在非神经退行性运动障碍多巴反应性肌张力障碍(DRD)中已描述了突变。我们现在证明,GCH1 会损害酪氨酸羟化酶(Th)的体内平衡并激活大脑中的固有免疫机制,并提供了小胶质细胞激活和吞噬活性的证据,而不是像其他人之前假设的那样导致 DAergic 细胞死亡。