Suppr超能文献

Functional consequences of monoglucosylation of Ha-Ras at effector domain amino acid threonine 35.

作者信息

Herrmann C, Ahmadian M R, Hofmann F, Just I

机构信息

Max-Planck-Institut für Molekulare Physiologie, Rheinlanddamm 201, D-44139 Dortmund, Germany.

出版信息

J Biol Chem. 1998 Jun 26;273(26):16134-9. doi: 10.1074/jbc.273.26.16134.

Abstract

Monoglucosylation of low molecular mass GTPases is an important post-translational modification by which microbes interfere with eukaryotic cell signaling. Ha-Ras is monoglucosylated at effector domain amino acid threonine 35 by Clostridium sordellii lethal toxin, resulting in a blockade of the downstream mitogen-activated protein kinase cascade. To understand the molecular consequences of this modification, effects of glucosylation on each step of the GTPase cycle of Ras were analyzed. Whereas nucleotide binding was not significantly altered, intrinsic GTPase activity was markedly decreased, and GTPase stimulation by the GTPase-activating protein p120(GAP) and neurofibromin NF-1 was completely blocked, caused by failure to bind to glucosylated Ras. Guanine nucleotide exchange factor (Cdc25)-catalyzed GTP loading was decreased, but not completely inhibited. A dominant-negative property of modified Ras to sequester exchange factor was not detectable. However, the crucial step in downstream signaling, Ras-effector coupling, was completely blocked. The Kd for the interaction between Ras.GTP and the Ras-binding domain of Raf was 15 nM, whereas glucosylation increased the Kd to >1 mM. Because the affinity of Ras.GDP for Raf (Kd = 22 microM) is too low to allow functional interaction, a glucose moiety at threonine 35 of Ras seems to block completely the interaction with Raf. The net effect of lethal toxin-catalyzed glucosylation of Ras is the complete blockade of Ras downstream signaling.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验