Hall E D, Oostveen J A, Gurney M E
Central Nervous System Diseases Research, Pharmacia and Upjohn, Inc., Kalamazoo, Michigan, USA.
Glia. 1998 Jul;23(3):249-56. doi: 10.1002/(sici)1098-1136(199807)23:3<249::aid-glia7>3.0.co;2-#.
Transgenic mice that highly over-express a mutated human CuZn superoxide dismutase (SOD1) gene [gly93-->ala; TgN(SOD1-G93A)G1H line] found in some patients with familial ALS (FALS) have been shown to develop motor neuron disease that is characterized by motor neuron loss in the lumbar and cervical spinal regions and a progressive loss of motor activity. The mutant Cu,Zn SOD exhibits essentially normal SOD activity but also generates toxic oxygen radicals as a result of an enhancement of a normally minor peroxidase reaction. Consequently, lipid and protein oxidative damage to the spinal motor neurons occurs and is associated with disease onset and progression. In the present study, we investigated the time course of microglial (major histocompatibility-II antigen immunoreactivity) and astrocytic (glial fibrillary acidic protein immunoreactivity) activation in relation to the course of motor neuron disease in the TgN(SOD1-G93A)G1H FALS mice. Four ages were investigated: 30 days (pre-motor neuron pathology and clinical disease); 60 days (after initiation of pathology, but pre-disease); 100 days (approximately 50% loss of motor neurons and function); and 120 days (near complete hindlimb paralysis). Compared to non-transgenic littermates, the TgN(SOD1-G93A)G1H mice showed significantly increased numbers of activated astrocytes (P < 0.01) at 100 days of age in both the cervical and lumbar spinal cord regions. However, at 120 days of age, the activation lost statistical significance. In contrast, microglial activation was significantly increased several-fold at both 100 and 120 days. We hypothesize that astrocytic activation may exert a trophic influence on the motor neurons that is insufficiently maintained late in the course of the disease. On the other hand, the sustained, intense microglial activation may conceivably contribute to the oxidative stress and damage involved in the disease process. If true, then agents which inhibit microglia may help to limit disease progression.
在一些家族性肌萎缩侧索硬化症(FALS)患者中发现的过度高表达突变型人铜锌超氧化物歧化酶(SOD1)基因[gly93→ala;TgN(SOD1 - G93A)G1H系]的转基因小鼠,已被证明会患上运动神经元疾病,其特征是腰段和颈段脊髓区域的运动神经元丧失以及运动活动逐渐丧失。突变型铜锌超氧化物歧化酶表现出基本正常的超氧化物歧化酶活性,但由于正常情况下较弱的过氧化物酶反应增强,也会产生有毒的氧自由基。因此,脊髓运动神经元会发生脂质和蛋白质氧化损伤,并与疾病的发生和进展相关。在本研究中,我们研究了小胶质细胞(主要组织相容性-II抗原免疫反应性)和星形胶质细胞(胶质纤维酸性蛋白免疫反应性)激活的时间进程与TgN(SOD1 - G93A)G1H FALS小鼠运动神经元疾病进程的关系。研究了四个年龄段:30天(运动神经元病理和临床疾病前期);60天(病理开始后,但疾病前期);100天(运动神经元和功能丧失约50%);以及120天(后肢几乎完全瘫痪)。与非转基因同窝小鼠相比,TgN(SOD1 - G93A)G1H小鼠在100日龄时,颈段和腰段脊髓区域的活化星形胶质细胞数量显著增加(P < 0.01)。然而,在120日龄时,这种激活失去了统计学意义。相比之下,小胶质细胞激活在100天和120天时均显著增加了几倍。我们推测,星形胶质细胞激活可能对运动神经元发挥营养作用,但在疾病后期这种作用无法充分维持。另一方面,可以想象持续强烈的小胶质细胞激活可能导致疾病过程中涉及的氧化应激和损伤。如果这是真的,那么抑制小胶质细胞的药物可能有助于限制疾病进展。