Suppr超能文献

在门控过程中,电压依赖性阴离子通道(VDAC)的传感区域从膜内转移至表面。

The sensor regions of VDAC are translocated from within the membrane to the surface during the gating processes.

作者信息

Song J, Midson C, Blachly-Dyson E, Forte M, Colombini M

机构信息

Department of Biology, University of Maryland, College Park 20742, USA.

出版信息

Biophys J. 1998 Jun;74(6):2926-44. doi: 10.1016/S0006-3495(98)78000-2.

Abstract

The motion of the sensor regions in a mitochondrial voltage-gated channel called VDAC were probed by attaching biotin at specific locations and determining its ability to bind to added streptavidin. Site-directed mutagenesis was used to introduce single cysteine residues into Neurospora crassa VDAC (naturally lacks cysteine). These were chemically biotinylated and reconstituted into planar phospholipid membranes. In the 19 sites examined, only two types of results were observed upon streptavidin addition: in type 1, channel conductance was reduced, but voltage gating could proceed; in type 2, channels were locked in a closed state. The result at type 1 sites is interpreted as streptavidin binding to sites in static regions close to the channel opening. The binding sterically interferes with ion flow. The result at type 2 sites indicates that these are located on a mobile domain and coincide with the previously identified sensor regions. The findings are consistent with closure resulting from the movement of a domain from within the transmembrane regions to the membrane surface. No single site was accessible to streptavidin from both membrane surfaces, indicating that the motion is limited. From the streptavidin-induced reduction in conductance at type 1 sites, structural information was obtained about the location of these sites.

摘要

通过在特定位置连接生物素并确定其与添加的链霉亲和素结合的能力,来探测一种名为电压依赖性阴离子通道(VDAC)的线粒体电压门控通道中传感器区域的运动。采用定点诱变技术将单个半胱氨酸残基引入粗糙脉孢菌VDAC(天然缺乏半胱氨酸)。这些残基经过化学生物素化处理后,重新构建到平面磷脂膜中。在所检测的19个位点上,添加链霉亲和素后仅观察到两种类型的结果:在第1类中,通道电导降低,但电压门控仍可进行;在第2类中,通道被锁定在关闭状态。第1类位点的结果被解释为链霉亲和素与靠近通道开口的静态区域中的位点结合。这种结合在空间上干扰了离子流动。第2类位点的结果表明,这些位点位于一个可移动的结构域上,并且与先前确定的传感器区域重合。这些发现与一个结构域从跨膜区域内部移动到膜表面导致通道关闭的情况一致。没有一个位点能从膜的两个表面都被链霉亲和素接触到,这表明这种运动是有限的。从链霉亲和素诱导的第1类位点电导降低的情况中,获得了关于这些位点位置的结构信息。

相似文献

2
The topology of VDAC as probed by biotin modification.
J Biol Chem. 1998 Sep 18;273(38):24406-13. doi: 10.1074/jbc.273.38.24406.
3
The voltage-gating process of the voltage-dependent anion channel is sensitive to ion flow.
Biophys J. 1998 Aug;75(2):704-13. doi: 10.1016/S0006-3495(98)77560-5.
4
Large scale rearrangement of protein domains is associated with voltage gating of the VDAC channel.
Biophys J. 1992 Apr;62(1):123-31; discussion 131-5. doi: 10.1016/S0006-3495(92)81799-X.
5
Mapping of residues forming the voltage sensor of the voltage-dependent anion-selective channel.
Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5446-9. doi: 10.1073/pnas.90.12.5446.
7
Circular dichroism studies of the mitochondrial channel, VDAC, from Neurospora crassa.
Biophys J. 1996 Aug;71(2):778-86. doi: 10.1016/S0006-3495(96)79277-9.
10
Selectivity changes in site-directed mutants of the VDAC ion channel: structural implications.
Science. 1990 Mar 9;247(4947):1233-6. doi: 10.1126/science.1690454.

引用本文的文献

1
Conformational plasticity of mitochondrial VDAC2 controls the kinetics of its interaction with cytosolic proteins.
Sci Adv. 2025 Apr 25;11(17):eadv4410. doi: 10.1126/sciadv.adv4410. Epub 2025 Apr 23.
2
The Single Residue K12 Governs the Exceptional Voltage Sensitivity of Mitochondrial Voltage-Dependent Anion Channel Gating.
J Am Chem Soc. 2022 Aug 17;144(32):14564-14577. doi: 10.1021/jacs.2c03316. Epub 2022 Aug 4.
3
Exploring lipid-dependent conformations of membrane-bound α-synuclein with the VDAC nanopore.
Biochim Biophys Acta Biomembr. 2021 Sep 1;1863(9):183643. doi: 10.1016/j.bbamem.2021.183643. Epub 2021 May 7.
4
Structure, gating and interactions of the voltage-dependent anion channel.
Eur Biophys J. 2021 Mar;50(2):159-172. doi: 10.1007/s00249-021-01515-7. Epub 2021 Mar 29.
5
Targeting the Multiple Physiologic Roles of VDAC With Steroids and Hydrophobic Drugs.
Front Physiol. 2020 May 7;11:446. doi: 10.3389/fphys.2020.00446. eCollection 2020.
6
The Structural Basis for Low Conductance in the Membrane Protein VDAC upon β-NADH Binding and Voltage Gating.
Structure. 2020 Feb 4;28(2):206-214.e4. doi: 10.1016/j.str.2019.11.015. Epub 2019 Dec 17.
7
Bcl-2-Protein Family as Modulators of IP Receptors and Other Organellar Ca Channels.
Cold Spring Harb Perspect Biol. 2020 Apr 1;12(4):a035089. doi: 10.1101/cshperspect.a035089.
8
Structure of voltage-dependent anion channel-tethered bilayer lipid membranes determined using neutron reflectivity.
Acta Crystallogr D Struct Biol. 2018 Dec 1;74(Pt 12):1219-1232. doi: 10.1107/S2059798318011749. Epub 2018 Nov 30.
9
Assessing the role of residue E73 and lipid headgroup charge in VDAC1 voltage gating.
Biochim Biophys Acta Bioenerg. 2019 Jan;1860(1):22-29. doi: 10.1016/j.bbabio.2018.11.001. Epub 2018 Nov 6.

本文引用的文献

2
Indications of a common folding pattern for VDAC channels from all sources.
J Bioenerg Biomembr. 1996 Apr;28(2):153-61. doi: 10.1007/BF02110646.
3
4
Transmembrane movement of the shaker K+ channel S4.
Neuron. 1996 Feb;16(2):387-97. doi: 10.1016/s0896-6273(00)80056-2.
6
VDAC, a channel in the outer mitochondrial membrane.
Ion Channels. 1996;4:169-202. doi: 10.1007/978-1-4899-1775-1_5.
7
Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel.
Neuron. 1996 Jun;16(6):1159-67. doi: 10.1016/s0896-6273(00)80142-7.
8
Molecular basis of charge movement in voltage-gated sodium channels.
Neuron. 1996 Jan;16(1):113-22. doi: 10.1016/s0896-6273(00)80028-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验