Beaudet L, Urbatsch I L, Gros P
Department of Biochemistry, McGill University, Montréal, Québec, Canada.
Biochemistry. 1998 Jun 23;37(25):9073-82. doi: 10.1021/bi972656j.
The amino- and carboxy-terminal nucleotide-binding domains (NBD1 and NBD2) of P-glycoprotein (P-gp) share over 80% sequence identity. Almost all of NBD1 can be exchanged by corresponding NBD2 segments with no significant loss of function, except for a small segment around the Walker B motif. Within this segment, we identified two sets of residues [ERGA --> DKGT (522-525) and T578C] that, when replaced by their NBD2 counterparts, cause dramatic alterations of the substrate specificity of the protein [Beaudet, L., and Gros, P. (1995) J. Biol. Chem. 270, 17159-17170]. We wished to gain insight into the molecular basis of this defect. For this, we overexpressed the wild-type mouse Mdr3 and variants bearing single or double mutations at these positions in the yeast Pichia pastoris. P-gp-specific ATPase activity was measured in yeast plasma membrane preparations after detergent solubilization and reconstitution in Escherichia coli proteoliposomes. P-gp proteoliposomes from P. pastoris showed a strong verapamil- and valinomycin-stimulated ATPase activity, with characteristics (KM, Vmax) similar to those measured in mammalian cells. Mutations did not appear to affect the KM for Mg2+ATP ( approximately 0.4 mM), but maximum velocity (Vmax) of the drug-stimulated ATPase activity was severely affected in a substrate/modulator-specific fashion. Indeed, all mutants showed complete loss of verapamil-induced ATPase, while all retained at least some degree of valinomycin-induced ATPase activity. Photolabeling studies with [125I]iodoarylazidoprazosin, including competition with MDR drugs and modulators, suggested that drug binding was not affected in the mutants. The altered drug resistance profiles of the ERGA --> DKGT(522-525) and T578C mutants in vivo, together with the observed alterations in substrate-induced ATPase activity of these proteins, suggest that the residues involved may form part of a signal pathway between the membrane regions (substrate binding) and the ATP binding sites.
P-糖蛋白(P-gp)的氨基末端和羧基末端核苷酸结合结构域(NBD1和NBD2)的序列同一性超过80%。除了沃克B基序周围的一小段序列外,几乎所有的NBD1都可以被相应的NBD2片段替换,而功能不会有明显损失。在该片段内,我们鉴定出两组残基[ERGA --> DKGT(522 - 525)和T578C],当它们被其NBD2对应残基取代时,会导致该蛋白底物特异性发生显著改变[博德特,L.,和格罗斯,P.(1995年)《生物化学杂志》270,17159 - 17170]。我们希望深入了解这种缺陷的分子基础。为此,我们在酵母毕赤酵母中过表达野生型小鼠Mdr3以及在这些位置带有单突变或双突变的变体。在去污剂溶解并在大肠杆菌蛋白脂质体中重建后,在酵母质膜制剂中测量P-gp特异性ATP酶活性。来自毕赤酵母的P-gp蛋白脂质体显示出强烈的维拉帕米和缬氨霉素刺激的ATP酶活性,其特征(KM,Vmax)与在哺乳动物细胞中测量的相似。突变似乎不影响Mg2+ATP的KM(约0.4 mM),但药物刺激的ATP酶活性的最大速度(Vmax)以底物/调节剂特异性方式受到严重影响。实际上,所有突变体均显示维拉帕米诱导的ATP酶完全丧失,而所有突变体至少保留了一定程度的缬氨霉素诱导的ATP酶活性。用[125I]碘芳基叠氮哌唑嗪进行的光标记研究,包括与MDR药物和调节剂的竞争,表明突变体中的药物结合未受影响。ERGA --> DKGT(522 - )和T578C突变体在体内改变的耐药谱,以及观察到的这些蛋白底物诱导的ATP酶活性的改变,表明所涉及的残基可能构成膜区域(底物结合)和ATP结合位点之间信号通路的一部分。