Shingyoji C, Higuchi H, Yoshimura M, Katayama E, Yanagida T
Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Japan.
Nature. 1998 Jun 18;393(6686):711-4. doi: 10.1038/31520.
Eukaryotic flagella beat rhythmically. Dynein is a protein that powers flagellar motion, and oscillation may be inherent to this protein. Here we determine whether oscillation is a property of dynein arms themselves or whether oscillation requires an intact axoneme, which is the central core of the flagellum and consists of a regular array of microtubules. Using optical trapping nanometry, we measured the force generated by a few dynein arms on an isolated doublet microtubule. When the dynein arms on the doublet microtubule contact a singlet microtubule and are activated by photolysis of caged ATP8, they generate a peak force of approximately 6pN and move the singlet microtubule over the doublet microtubule in a processive manner. The force and displacement oscillate with a peak-to-peak force and amplitude of approximately 2 pN and approximately 30 nm, respectively. The geometry of the interaction indicates that very few (possibly one) dynein arms are needed to generate the oscillation. The maximum frequency of the oscillation at 0.75 mM ATP is approximately 70 Hz; this frequency decreases as the ATP concentration decreases. A similar oscillatory force is also generated by inner dynein arms alone on doublet microtubules that are depleted of outer dynein arms. The oscillation of the dynein arm may be a basic mechanism underlying flagellar beating.
真核生物的鞭毛有节奏地摆动。动力蛋白是一种为鞭毛运动提供动力的蛋白质,振荡可能是这种蛋白质所固有的。在这里,我们确定振荡是动力蛋白臂自身的特性,还是振荡需要完整的轴丝,轴丝是鞭毛的核心,由规则排列的微管组成。使用光镊纳米技术,我们测量了少数动力蛋白臂在分离的双联微管上产生的力。当双联微管上的动力蛋白臂接触单联微管并通过笼形ATP8的光解激活时,它们产生约6皮牛的峰值力,并以连续的方式使单联微管在双联微管上移动。力和位移分别以约2皮牛的峰峰值力和约30纳米的振幅振荡。相互作用的几何结构表明,产生振荡可能只需要极少数(可能一个)动力蛋白臂。在0.75 mM ATP时振荡的最大频率约为70赫兹;该频率随着ATP浓度的降低而降低。仅由内部动力蛋白臂在缺乏外部动力蛋白臂的双联微管上也会产生类似的振荡力。动力蛋白臂的振荡可能是鞭毛摆动的一种基本机制。