Shah M R, Phillips R P, Normann R A
Department of Bioengineering, University of Utah, Salt Lake City 84112, USA.
IEEE Trans Biomed Eng. 1998 Jul;45(7):867-76. doi: 10.1109/10.686794.
We have explored the use of printed spiral coils (PSC's) for neuroprosthetic transcranial telemetry applications. We fabricated two-dimensional PSC's on a thin (25 microns) polyimide substrate using copper (35 microns) as a conducting material. All the coils had a fixed inner diameter of 1.0 cm. We fabricated two sets of coils. One set of coils consisted of 2- to 5-turn circular and square spiral coils and had different trace widths (W), different spacings (S) between adjacent traces, and different outer diameters. The other set of coils consisted of 5-turn circular spiral coils and had fixed inner and outer diameters but different W to S ratios. We measured loss resistances (Rs and Rp) and quality factors (Q) of these coils at different resonating frequencies in the range of 5-40 MHz. Over this frequency range, we observed that for fixed inner and outer diameters, the coil with the largest W achieved the lowest Rs and the highest Rp and Q. These electrical properties and the fact that these coils can conform to the complex convoluted cortical surface suggest that a PSC [15] can provide a viable alternative to a conventional wire-wound coil for neuroprosthetic transcranial telemetry applications.