Manzanares J, Corchero J, Romero J, Fernandez-Ruiz J J, Ramos J A, Fuentes J A
Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Spain.
Brain Res Mol Brain Res. 1998 Mar 30;55(1):126-32. doi: 10.1016/s0169-328x(97)00371-9.
This study was designed to examine the interactions between the cannabinoid and enkephalinergic systems in the rat brain. To this aim, we have examined the effects of subchronic (5 days) administration (10 mg.kg-1.day-1; i.p.) of delta 9 -tetrahydrocannabinol (THC) or R-methanandamide (AM356) and chronic (18 days) administration with the synthetic cannabinoid receptor agonist CP-55,940 (1 mg.kg-1.day-1; i.p) on proenkephalin (PENK) mRNA levels in several brain regions of the rat. Twenty micrometer brain sections from striatum, nucleus accumbens, paraventricular nucleus, ventromedial nucleus, periaqueductal grey matter and mammillary nucleus were hybridized with an oligonucleotide probe complementary to PENK using in situ hybridization technique. Subchronic administration of THC or AM356 increased PENK mRNA levels in the ventromedial nucleus of the hypothalamus, (82%) and (39%), in the periaqueductal grey matter, (97%) and (49%), and mammillary nucleus, (43%) and (9%), respectively. In contrast, both drugs were without effect in the striatum and nucleus accumbens. On the other hand, chronic administration of CP-55,940 increased PENK mRNA levels in the striatum (44%), nucleus accumbens (25%), paraventricular (31%) and ventromedial nuclei of the hypothalamus (41%). These results revealed that chronic cannabinoid administration increases opioid gene expression in the rat central nervous system and suggest an interaction between the cannabinoid and enkephalinergic systems that may be part of a molecular integrative response to behavioral and neurochemical alterations that occur in cannabinoid drug abuse.