MacGregor J I, Jordan V C
Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, IL 60611, USA.
Pharmacol Rev. 1998 Jun;50(2):151-96.
Forty years ago, Lerner and coworkers (1958) discovered the first nonsteroidal antiestrogen and Jensen (Jensen and Jacobson, 1960) identified a target for drug action, the ER. This knowledge opened the door for the clinical development of tamoxifen which we now know provides a survival advantage in both node-positive and node-negative patients with ER-positive disease (Early Breast Cancer Trialists Collaborative Group, 1992, 1998). The drug has been studied extensively, and the results have provided an invaluable insight into possible ancillary advantages of "antiestrogens", i.e., maintenance of bone density and the prevention of coronary heart disease, and possible disadvantages, i.e., rat liver carcinogenesis and an increased risk of endometrial cancer. Most importantly, the identification of the target site-specific actions of tamoxifen caused a paradigm shift in the prospective uses of antiestrogens from a direct exploitation of the antitumor properties to the broader application as a preventative for osteoporosis, but with the beneficial side effects of preventing breast and endometrial cancer. Raloxifene, a second-generation SERM, has all the properties in the laboratory that would encourage development as a safe preventative for osteoporosis (Jordan et al., 1997). As a result, raloxifene has been evaluated in more than 11,000 postmenopausal women and found to maintain bone density with significant decreases in breast cancer incidence and no increase in endometrial thickness. Raloxifene is now available as a preventative for osteoporosis in postmenopausal women. There is every reason to believe that a multifaceted agent like raloxifene will find widespread use, and there will be continuing interest by the pharmaceutical industry in the development of new agents with even broader applications. The extensive clinical effort is augmented by past molecular innovations in the laboratory and the future promise of new discoveries. The cloning and sequencing of the ER (Green et al., 1986; Greene et al., 1986) has allowed the development of an ER knock-out mouse (Lubahn et al., 1993) that compliments Jensen's pioneering work (Jensen and Jacobson, 1962) and describes the consequences of the loss of ER alpha. However, ER beta (Kuiper et al., 1996), the second ER, has provided an additional dimension to the description of estrogen and antiestrogen action. For the future, the development of ER beta monoclonal antibodies, the classification of target sites for the protein around the body, and the creation of ER beta and ER alpha, beta knock-out mice will identify new therapeutic targets to modulate physiological functions. Clearly, the successful crystallization of ER alpha with raloxifene (Brzozowski et al., 1997) must act as a stimulus for the crystallization of ER beta. The central issue for research on antiestrogen pharmacology is the discovery of the mechanism (or mechanisms) of target site-specificity for the modulation of estrogenic and antiestrogenic response. The description of a stimulatory pathway for antiestrogens through an AP-1 ER beta signal transduction pathway (Paech et al., 1997), although interesting, may not entirely explain the estrogenicity of antiestrogens. The model must encompass the sum of pharmacological consequences of signal transduction through ER alpha and ER beta with the simultaneous competition from endogenous estrogens at both sites. This is complicated because estradiol is an antagonist at ER beta through AP-1 sites (Paech et al., 1997), so this is clearly not the pathway for estrogen-induced bone maintenance in women. Estrogen is stimulatory through ER alpha, but antiestrogens are usually partial agonists and may either block or stimulate genes. However, we suggest that the ER alpha stimulatory pathway could be amplified through selective increases in coactivators. The principle is illustrated with the MDA-MB-231 cells stably transfected with the cDNAs for the wild-type and the amino acid 351 mutan
四十年前,勒纳及其同事(1958年)发现了第一种非甾体类抗雌激素药物,詹森(詹森和雅各布森,1960年)确定了药物作用靶点——雌激素受体(ER)。这一发现为他莫昔芬的临床开发打开了大门,我们现在知道,他莫昔芬能使雌激素受体阳性疾病的淋巴结阳性和淋巴结阴性患者都获得生存优势(早期乳腺癌试验协作组,1992年、1998年)。该药物已得到广泛研究,其结果为深入了解“抗雌激素”可能带来的辅助益处(即维持骨密度和预防冠心病)以及可能的弊端(即大鼠肝癌发生和子宫内膜癌风险增加)提供了宝贵见解。最重要的是,他莫昔芬靶点特异性作用的确定,使抗雌激素药物的预期用途发生了范式转变,从直接利用其抗肿瘤特性,扩展到更广泛地用作骨质疏松症的预防药物,同时还具有预防乳腺癌和子宫内膜癌的有益副作用。雷洛昔芬作为第二代选择性雌激素受体调节剂(SERM),在实验室中具备所有有望作为安全预防骨质疏松症药物开发的特性(乔丹等人,1997年)。因此,超过11000名绝经后女性参与了雷洛昔芬的评估,结果发现它能维持骨密度,显著降低乳腺癌发病率,且不会增加子宫内膜厚度。雷洛昔芬现已作为绝经后女性骨质疏松症的预防药物上市。完全有理由相信,像雷洛昔芬这样的多面活性剂将会得到广泛应用,制药行业也会持续关注开发具有更广泛应用的新型药物。过去实验室中的分子创新以及未来新发现的前景,都为广泛的临床研究提供了助力。雌激素受体的克隆和测序(格林等人,1986年;格林尼等人,1986年)使得雌激素受体基因敲除小鼠得以培育(卢巴恩等人,1993年),这补充了詹森的开创性工作(詹森和雅各布森,1962年),并描述了雌激素受体α缺失的后果。然而,第二种雌激素受体——雌激素受体β(库伊珀等人,1996年),为雌激素和抗雌激素作用的描述增添了新的维度。未来,雌激素受体β单克隆抗体的开发、该蛋白在体内靶点的分类以及雌激素受体β和雌激素受体α/β基因敲除小鼠的培育,将确定调节生理功能的新治疗靶点。显然,雌激素受体α与雷洛昔芬成功结晶(布佐夫斯基等人,1997年)必然会刺激雌激素受体β的结晶。抗雌激素药理学研究的核心问题是发现调节雌激素和抗雌激素反应的靶点特异性机制。通过AP - 1雌激素受体β信号转导途径对抗雌激素刺激途径的描述(佩奇等人,1997年)虽然有趣,但可能无法完全解释抗雌激素的雌激素样作用。该模型必须涵盖通过雌激素受体α和雌激素受体β进行信号转导的药理学后果总和,以及内源性雌激素在这两个位点的同时竞争。这很复杂,因为雌二醇通过AP - 1位点在雌激素受体β上是拮抗剂(佩奇等人,1997年),所以这显然不是女性中雌激素诱导骨维持的途径。雌激素通过雌激素受体α起刺激作用,但抗雌激素通常是部分激动剂,可能会阻断或刺激基因。然而,我们认为雌激素受体α刺激途径可以通过共激活剂的选择性增加而放大。这一原理在稳定转染野生型和氨基酸351突变体cDNA的MDA - MB - 231细胞中得到了体现。