Suppr超能文献

Selection of task-dependent diffusion filters for the post-processing of SPECT images.

作者信息

Beekman F J, Slijpen E T, Niessen W J

机构信息

Department of Nuclear Medicine, Image Sciences Institute, University Hospital Utrecht, The Netherlands.

出版信息

Phys Med Biol. 1998 Jun;43(6):1713-30. doi: 10.1088/0031-9155/43/6/024.

Abstract

Iterative reconstruction from single photon emission computed tomography (SPECT) data requires regularization to avoid noise amplification and edge artefacts in the reconstructed image. This is often accomplished by stopping the iteration process at a relatively low number of iterations or by post-filtering the reconstructed image. The aim of this paper is to develop a method to automatically select an optimal combination of stopping iteration number and filters for a particular imaging situation. To this end different error measures between the distribution of a phantom and a corresponding filtered SPECT image are minimized for different iteration numbers. As a study example, simulated data representing a brain study are used. For post-reconstruction filtering, the performance of 3D linear diffusion (Gaussian filtering) and edge preserving 3D nonlinear diffusion (Catté scheme) is investigated. For reconstruction methods which model the image formation process accurately, error measures between the phantom and the filtered reconstruction are significantly reduced by performing a high number of iterations followed by optimal filtering compared with stopping the iterative process early. Furthermore, this error reduction can be obtained over a wide range of iteration numbers. Only a negligibly small additional reduction of the errors is obtained by including spatial variance in the filter kernel. Compared with Gaussian filtering, Catté diffusion can further reduce the error in some cases. For the examples considered, using accurate image formation models during iterative reconstruction is far more important than the choice of the filter.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验