Posthuma N, ter Wee P M, Donker A J, Oe P L, van Dorp W, Peers E M, Verbrugh H A
Department of Nephrology, Free University Hospital, Amsterdam, The Netherlands.
Perit Dial Int. 1997 Nov-Dec;17(6):602-7.
To evaluate the safety, efficacy, and biocompatibility of icodextrin- and glucose-containing dialysis fluid during continuous cycling peritoneal dialysis (CCPD), patients were treated for 2 years with either icodextrin- or glucose-containing dialysis fluid for their daytime dwell (14-15 hours). Prior to entry into the study, all patients used a standard glucose solution (Dianeal 1.36%, 2.27%, or 3.86%, Baxter, Utrecht, The Netherlands).
Open, randomized, prospective, two-center study.
University hospital and teaching hospital.
Both established and patients new to CCPD were included. A life expectancy of more than 2 years, a stable clinical condition, and written informed consent were necessary before entry. Patients aged under 18, those with peritonitis in the previous month, and women of childbearing potential, unless taking adequate contraceptive precautions, were excluded. Thirty-eight patients entered the study, and 25 (13 glucose, 12 icodextrin) had a follow-up period of 12 months or longer in December 1996.
Serum icodextrin metabolites: one to five glucose units (G1-G5), a high molecular weight fraction (G > 10), and total carbohydrate level, as well as a biochemical profile were determined every 3 months in combination with all other study variables.
In icodextrin-treated patients, serum disaccharide (maltose) concentrations increased from 0.05 +/- 0.01 (mean +/- SEM) at baseline, to an average concentration in the follow-up visits of 1.14 +/- 0.13 mg/mL (p < 0.001). All icodextrin metabolites increased significantly from baseline, as illustrated by the serum total carbohydrate minus glucose levels: from 0.42 +/- 0.05 mg/mL to an average concentration in the follow-up visits of 5.04 +/- 0.49 mg/mL (p < 0.001). At the same time, serum sodium levels decreased from 138.1 +/- 0.7 mmol/L to an average concentration in the follow-up visits of 135.4 +/- 0.8 mmol/L (p < 0.05). However, after 12 months the serum sodium concentration increased nonsignificantly (NS) from baseline to 136.6 +/- 0.9 mmol/L, after an initial decrease. Serum osmolality increased significantly from baseline in icodextrin users at 9 and 12 months, but did not differ significantly from glucose users in any visit. In icodextrin-treated patients, the calculated serum osmolal gap increased significantly from 4.1 +/- 1.4 mOsm/kg to an average of 11.8 +/- 1.7 mOsm/kg (p < 0.01). The sum of the serum icodextrin metabolites in millimoles/liter equaled the increase in osmolal gap. Body weight increased in icodextrin users (71.9 +/- 2.8 kg to 77.8 +/- 3.0 kg; NS). Clinical adverse effects did not accompany these findings. Residual renal function remained stable during follow-up.
The serum icodextrin metabolite levels in the present study increased markedly and were the same as those found previously in continuous ambulatory peritoneal dialysis patients treated with icodextrin, despite the longer dwell time for CCPD patients (14-16 hr versus 8-12 hr). The initial decrease in serum sodium concentration was followed by an increase to a concentration not different from baseline at 12 months. The pathophysiology of this finding is speculated. Calculated osmolal gap in icodextrin patients increased significantly (p < 0.01) at every follow-up visit, and could be explained by the serum icodextrin metabolite increase. We encountered no clinical side effects of the observed levels of icodextrin metabolites.
为评估含艾考糊精和葡萄糖的透析液在持续循环腹膜透析(CCPD)中的安全性、有效性和生物相容性,患者使用含艾考糊精或葡萄糖的透析液进行日间留腹(14 - 15小时)治疗2年。在进入研究之前,所有患者均使用标准葡萄糖溶液(百特公司生产的1.36%、2.27%或3.86%的腹透液,荷兰乌得勒支)。
开放、随机、前瞻性、双中心研究。
大学医院和教学医院。
纳入CCPD的新老患者。入组前预期寿命超过2年、临床状况稳定且签署书面知情同意书。排除18岁以下患者、前一个月有腹膜炎的患者以及有生育潜力的女性(除非采取了充分的避孕措施)。38名患者进入研究,1996年12月时,25名患者(13名使用葡萄糖透析液,12名使用艾考糊精透析液)有12个月或更长时间的随访。
每3个月测定血清艾考糊精代谢产物(一至五个葡萄糖单位(G1 - G5)、高分子量部分(G > 10))、总碳水化合物水平以及生化指标,并结合所有其他研究变量进行测定。
在使用艾考糊精治疗的患者中,血清二糖(麦芽糖)浓度从基线时的0.05 ± 0.01(均值 ± 标准误)增加到随访时的平均浓度1.14 ± 0.13 mg/mL(p < 0.001)。所有艾考糊精代谢产物从基线时均显著增加,血清总碳水化合物减去葡萄糖水平可说明这一点:从0.42 ± 0.05 mg/mL增加到随访时的平均浓度5.04 ± 0.49 mg/mL(p < 0.001)。同时,血清钠水平从138.1 ± 0.7 mmol/L降至随访时的平均浓度135.4 ± 0.8 mmol/L(p < 0.05)。然而,12个月后,血清钠浓度在最初下降后从基线无显著增加(NS)至136.6 ± 0.9 mmol/L。使用艾考糊精的患者在9个月和12个月时血清渗透压较基线显著增加,但在任何一次随访中与使用葡萄糖的患者相比无显著差异。在使用艾考糊精治疗的患者中,计算得出的血清渗透压间隙从4.1 ± 1.4 mOsm/kg显著增加至平均11.8 ± 1.7 mOsm/kg(p < 0.01)。血清艾考糊精代谢产物的毫摩尔/升总和等于渗透压间隙的增加。使用艾考糊精的患者体重增加(从71.9 ± 2.8 kg增至77.8 ± 3.0 kg;无显著差异)。这些结果未伴随临床不良反应出现。随访期间残余肾功能保持稳定。
本研究中血清艾考糊精代谢产物水平显著升高,与先前接受艾考糊精治疗的持续非卧床腹膜透析患者的水平相同,尽管CCPD患者的留腹时间更长(14 - 16小时对8 - 12小时)。血清钠浓度最初下降,随后在12个月时增加至与基线无差异的浓度。推测了这一发现的病理生理学机制。在每次随访时,使用艾考糊精患者的计算渗透压间隙显著增加(p < 0.01),这可由血清艾考糊精代谢产物增加来解释。我们未遇到观察到的艾考糊精代谢产物水平导致的临床副作用。