Cepus V, Ulbrich C, Allin C, Troullier A, Gerwert K
Lehrstuhl für Biophysik, Fakultät Biologie, Bochum, Germany.
Methods Enzymol. 1998;291:223-45. doi: 10.1016/s0076-6879(98)91015-1.
Time-resolved FTIR difference spectroscopy is a powerful tool for investigating molecular reaction mechanisms of proteins. In order to detect, beyond the large background absorbance of the protein and the water, absorbance bands of protein groups that undergo reactions, difference spectra have to be performed between a ground state and an activated state of the sample. Because the absorbance changes are small, the reaction has to be started in situ, in the apparatus, and in thin protein films. The use of caged compounds offers an elegant approach to initiate protein reactions with a nanosecond UV laser flash. Here, time-resolved FTIR and FT-Raman photolysis studies of the commonly used caged compounds, caged Pi, caged ATP, caged GTP, and caged calcium are presented. The use of specific isotopic labels allows us to assign the IR bands to specific groups. Because metal ions play an important role in many biological systems, their influence on FTIR spectra of caged compounds is discussed. The results presented should provide a good basis for further FTIR studies on molecular reaction mechanisms of energy or signal transducing proteins. As an example of such investigations, the time-resolved FTIR studies on the GTPase reaction of H-ras p21 using caged GTP is presented.
时间分辨傅里叶变换红外差示光谱法是研究蛋白质分子反应机制的有力工具。为了在蛋白质和水的大量背景吸收之外,检测发生反应的蛋白质基团的吸收带,必须在样品的基态和活化态之间进行差示光谱分析。由于吸光度变化很小,反应必须在仪器中、在薄蛋白质膜中原位启动。笼形化合物的使用为用纳秒紫外激光闪光引发蛋白质反应提供了一种巧妙的方法。本文介绍了常用笼形化合物(笼形磷酸根、笼形ATP、笼形GTP和笼形钙)的时间分辨傅里叶变换红外光谱和傅里叶变换拉曼光解研究。使用特定的同位素标记使我们能够将红外波段指定到特定的基团。由于金属离子在许多生物系统中起着重要作用,因此讨论了它们对笼形化合物傅里叶变换红外光谱的影响。所呈现的结果应为进一步研究能量或信号转导蛋白质的分子反应机制的傅里叶变换红外光谱研究提供良好的基础。作为此类研究的一个例子,本文介绍了使用笼形GTP对H-ras p21的GTPase反应进行的时间分辨傅里叶变换红外光谱研究。